
tibanna Documentation
Release 4.0.0

4DN DCIC

Sep 15, 2023

Contents

1 What do I need to run pipelines using Tibanna? 3
1.1 Pipeline . 3
1.2 Data . 3
1.3 AWS cloud account . 3
1.4 Tibanna . 4

i

ii

tibanna Documentation, Release 4.0.0

Tibanna is a software tool that helps you run genomic pipelines on the Amazon (AWS) cloud. It is also used by
4DN-DCIC (4D Nucleome Data Coordination and Integration Center) to process data.

Contents 1

tibanna Documentation, Release 4.0.0

2 Contents

CHAPTER 1

What do I need to run pipelines using Tibanna?

• Your pipeline

• Your data

• An Amazon Web Services (AWS) cloud account

• Tibanna

1.1 Pipeline

• The commands to run your pipeline must be written in either Common Workflow Language (CWL) (recom-
mended), Workflow Description Language (WDL) (only basic support), Snakemake or a list of shell commands.

• The pipelines may be local CWL/WDL/Snakemake files or they should be downloadable from public urls.

• With the exception of Snakemake, your pipeline and dependencies must be pre-installed as a Docker image
(https://www.docker.com/). For Snakemake, conda can be used instead.

1.2 Data

• Your data must be in AWS S3 buckets.

1.3 AWS cloud account

• Confirm that you can log in to AWS.

3

https://www.commonwl.org/
https://software.broadinstitute.org/wdl/
https://snakemake.readthedocs.io/en/stable/
https://www.docker.com/
https://aws.amazon.com/

tibanna Documentation, Release 4.0.0

1.4 Tibanna

• Tibanna is open-source and can be found on github.

• Once installed, Tibanna can be run either as a set of commend-line tools or a set of python modules.

Command-line tools

$ tibanna run_workflow --input-json=run1.json

Python

>>> from tibanna.core import API
>>> API().run_workflow(input_json='run1.json') # input_json is a json file or a dict
→˓object

Contents:

1.4.1 News and updates

Publication

• May 15, 2019 Tibanna paper is out on Bioinformatics now! https://doi.org/10.1093/bioinformatics/btz379

• Apr 18. 2019 A newer version of the Tibanna paper is out on Biorxiv! https://www.biorxiv.org/content/10.
1101/440974v3

• Oct 11. 2018 Tibanna paper preprint is out on Biorxiv! https://www.biorxiv.org/content/early/2018/10/11/
440974

Version updates

For more recent version updates, check out Tibanna releases

Sep 15, 2023 The latest version is now 4.0.0_.

• Support for Python 3.7 has been dropped

• Added support for Python 3.9 and 3.10

Nov 18, 2022 The latest version is now 3.0.0_.

• Tibanna now supports AWS Graviton-based instances.

• The instance type configuration now allows single instances (e.g., t3.micro) and lists (e.g.,
[t3.micro, t3.small]). If spot_instance is enabled, Tibanna will run the work-
flow on the instance with the highest available capacity. If spot_instance is disabled, it
will run the workflow on the cheapest instance in the list.

• The option other_instance_types for behavior_on_capacity_limit has been
removed. It will fall back to wait_and_retry.

Mar 10, 2022 The latest version is now 2.0.0.

• The default Python version for Tibanna is now 3.8 (or 3.7). Python 3.6 is no longer supported.

Sep 16, 2019 The latest version is now 0.9.1.

4 Chapter 1. What do I need to run pipelines using Tibanna?

https://github.com/4dn-dcic/tibanna
https://doi.org/10.1093/bioinformatics/btz379
https://www.biorxiv.org/content/10.1101/440974v3
https://www.biorxiv.org/content/10.1101/440974v3
https://www.biorxiv.org/content/early/2018/10/11/440974
https://www.biorxiv.org/content/early/2018/10/11/440974
https://pypi.org/project/tibanna/
https://github.com/4dn-dcic/tibanna/releases/tag/v2.0.0
https://github.com/4dn-dcic/tibanna/releases/tag/v0.9.1

tibanna Documentation, Release 4.0.0

• A new functionality of generating a resource metrics report html is now added! This report includes
a graph of CPU/Memory/disk space utilization and usage at 1min interval, as well as a table of
summary metrics. - After each run, an html report gets automatically added to the log_bucket
which can be viewed using a Web Browser. However, for this to take effect, the unicorn must
be redeployed. - The new plot_metrics function of CLI (tibanna plot_metrics -h)
allows users to create the resource metrics report before a run it complete. - The same function can
be used through Python API (API().plot_metrics(job_id=<jobid>, ...))

• A new functionality cost is added to the tibanna CLI/API, to retrieve the cost of a specific run. -
tibanna cost --job-id=<jobid> - It usually takes a day for the cost to be available. - The
cost can also be added to the resource plot, by

tibanna cost -j <jobid> --update-tsv
tibanna plot_metrics -j <jobid> --update-html-only --force-upload

– A new dynamoDB-based jobID indexing is enabled! This allows users to search by jobid with-
out specifying step function name and even after the execution expires (e.g. tibanna log,
tibanna plot_metrics) - To use this feature, the unicorn must be redeployed. Only the
runs created after the redeployment would be searchable using this feature. When the jobid in-
dex is not available, tibanna automatically switches to the old way of searching. - DynamoDB
may add to the cost but very minimally (up to $0.01 per month in case of 4DN)

– Benchmark 0.5.5 is used now for 4DN pipelines.

– run_workflow now has --do-not-open-browser option that disables opening the
Step function execution on a Web Browser.

Aug 14, 2019 The latest version is now 0.9.0.

• root_ebs_size now supported (default 8) as a config field. (useful for large docker images or
multiple docker images, which uses root EBS)

• TIBANNA_AWS_REGION and AWS_ACCOUNT_NUMBER no longer required as environment vari-
ables.

Jul 22, 2019 The latest version is now 0.8.8.

• Fixed installation issue caused by python-lambda-4dn

• Input file can now be a directory for shell and snakemake - e.g. "file:///data1/shell/
somedir" : "s3://bucketname/dirname"

• Output target can now be a directory for shell and snakemake - e.g. "file:///data1/
shell/somedir": "dirname"

Jul 8, 2019 The latest version is now 0.8.7.

• ec2 termination policy is added to usergroup to support kill function

• run_workflow verbose option is now passed to dynamodb

Jun 25, 2019 The latest version is now 0.8.6.

• A newly introduced issue of not reporting Metric after the run is now fixed.

• With tibanna log, when the log/postrunjson file is not available, it does not raise an error but
prints a message.

• Benchmark 0.5.4 is used instead of 0.5.3 for 4DN pipelines.

Jun 14, 2019 The latest version is now 0.8.5.

• A newly introduced bug in the rerun cli (not working) now fixed.

1.4. Tibanna 5

https://github.com/4dn-dcic/tibanna/releases/tag/v0.9.0
https://github.com/4dn-dcic/tibanna/releases/tag/v0.8.8
https://github.com/4dn-dcic/tibanna/releases/tag/v0.8.7
https://github.com/4dn-dcic/tibanna/releases/tag/v0.8.6
https://github.com/4dn-dcic/tibanna/releases/tag/v0.8.5

tibanna Documentation, Release 4.0.0

Jun 12, 2019 The latest version is now 0.8.4.

• The issue of auto-determined EBS size being sometimes not an integer fixed.

• Now input files in the unicorn input json can be written in the format of s3://bucket/key as
well as {'bucket_name': bucket, 'object_key': key}

• command can be written in the format of a list for aesthetic purpose (e.g. [command1,
command2, command3] is equivalent to command1; command2; command3)

Jun 10, 2019 The latest version is now 0.8.3.

• A newly introduced issue of --usergroup not working properly with
deploy_unicorn/deploy_core is now fixed.

• Now one can specify mem (in GB) and cpu instead of instance_type. The most cost-effective
instance type will be auto-determined.

• Now one can set behavior_on_capacity_limit to other_instance_types, in which
case tibanna will try the top 10 instance types in the order of decreasing hourly cost.

• EBS size can be specified in the format of 3x, 5.5x, etc. to make it 3 (or 5.5) times the total input
size.

Jun 3, 2019 The latest version is now 0.8.2.

• One can now directly send in a command and a container image without any CWL/WDL (language
= shell).

• One can now send a local/remote(http or s3) Snakemake workflow file to awsem and run it (either
the whole thing, a step or multiple steps in it). (language = snakemake)

• Output target and input file dictionary keys can now be a file name instead of an argument name
(must start with file://) - input file dictionary keys must be /data1/input, /data1/out
or either /data1/shell or /data1/snakemake (depending on the language option).

• With shell / snakemake option, one can also exec into the running docker container after sshing
into the EC2 instance.

• The dependency field can be in args, config or outside both in the input json.

May 30, 2019 The latest version is now 0.8.1.

• deploy_core (and deploy_unicorn) not working in a non-venv environment fixed

• local CWL/WDL files and CWL/WDL files on S3 are supported.

• new issue with opening the browser with run_workflow fixed

May 29, 2019 The latest version is now 0.8.0.

• Tibanna can now be installed via pip install tibanna! (no need to git clone)

• Tibanna now has its own CLI! Instead of invoke run_workflow, one should use tibanna
run_workflow.

• Tibanna’s API now has its own class! Instead of from core.utils import
run_workflow, one should use the following.

from tibanna.core import API
API().run_workflow(...)

• The API run_workflow() can now directly take an input json file as well as an input dictionary
(both through `input_json parameter).

• The rerun CLI now has --appname_filter option exposed

6 Chapter 1. What do I need to run pipelines using Tibanna?

https://github.com/4dn-dcic/tibanna/releases/tag/v0.8.4
https://github.com/4dn-dcic/tibanna/releases/tag/v0.8.3
https://github.com/4dn-dcic/tibanna/releases/tag/v0.8.2
https://github.com/4dn-dcic/tibanna/releases/tag/v0.8.1
https://github.com/4dn-dcic/tibanna/releases/tag/v0.8.0

tibanna Documentation, Release 4.0.0

• The rerun_many CLI now has --appname-filter, --shutdown-min, --ebs-size,
--ebs-type, --ebs-iops, --key-name, --name options exposed. The API also now has
corresponding parameters.

• The stat CLI now has API and both has a new parameter n (-n) that prints out the first n lines only.
The option -v (--verbose) is not replaced by -l (--long)

May 15, 2019 The latest version is now 0.7.0.

• Now works with Python3.6 (2.7 is deprecated!)

• newly introduced issue with non-list secondary output target handling fixed

• fixed the issue with top command reporting from ec2 not working any more

• now the run_workflow function does not later the original input dictionary

• auto-terminates instance when CPU utilization is zero (inactivity) for an hour (mostly due to aws-
related issue but could be others).

• The rerun function with a run name that contains a uuid at the end(to differentiate identical run
names) now removes it from run_name before adding another uuid.

Mar 7, 2019 The latest version is now 0.6.1.

• Default public bucket access is deprecated now, since it also allows access to all buckets in one’s
own account. The users must specify buckets at deployment, even for public buckets. If the user
doesn’t specify any bucket, the deployed Tibanna will only have access to the public tibanna test
buckets of the 4dn AWS account.

• A newly introduced issue of rerun with no run_name in config fixed.

Feb 25, 2019 The latest version is now 0.6.0.

• The input json can now be simplified.

– app_name, app_version, input_parameters, secondary_output_target,
secondary_files fields can now be omitted (now optional)

– instance_type, ebs_size, EBS_optimized can be omitted if benchmark is provided
(app_name is a required field to use benchmark)

– ebs_type, ebs_iops, shutdown_min can be omitted if using default (‘gp2’, ‘’, ‘now’,
respectively)

– password and key_name can be omitted if user doesn’t care to ssh into running/failed in-
stances

• issue with rerun with a short run name containing uuid now fixed.

Feb 13, 2019 The latest version is now 0.5.9.

• Wrong requirement of SECRET env is removed from unicorn installation

• deploy_unicorn without specified buckets also works

• deploy_unicorn now has --usergroup option

• cloud metric statistics aggregation with runs > 24 hr now fixed

• invoke -l lists all invoke commands

• invoke add_user, invoke list and invoke users added

• log() function not assuming default step function fixed

• invoke log working only for currently running jobs fixed

1.4. Tibanna 7

https://github.com/4dn-dcic/tibanna/releases/tag/v0.7.0
https://github.com/4dn-dcic/tibanna/releases/tag/v0.6.1
https://github.com/4dn-dcic/tibanna/releases/tag/v0.6.0
https://github.com/4dn-dcic/tibanna/releases/tag/v0.5.9

tibanna Documentation, Release 4.0.0

Feb 4, 2019 The latest version is now 0.5.8.

• invoke log can be used to stream log or postrun json file.

• postrun json file now contains Cloudwatch metrics for memory/CPU and disk space for all jobs.

• invoke rerun has config override options such as --instance-type, shutdown-min,
ebs-size and key-name to rerun a job with a different configuration.

Jan 16, 2019 The latest version is now 0.5.7.

• Spot instance is now supported. To use a spot instance, use "spot_instance":
true in the config field in the input execution json.

"spot_instance": true,
"spot_duration": 360

Dec 21, 2018 The latest version is now 0.5.6.

• CloudWatch set up permission error fixed

• invoke kill works with jobid (previously it worked only with execution arn)

invoke kill --job-id=<jobid> [--sfn=<stepfunctionname>]

• A more comprehensive monitoring using invoke stat -v that prints out instance ID, IP,
instance status, ssh key and password.

• To update an existing Tibanna on AWS, do the following

invoke setup_tibanna_env --buckets=<bucket1>,<bucket2>,...
invoke deploy_tibanna --sfn-type=unicorn --usergroup=<usergroup_name>

e.g.

invoke setup_tibanna_env --buckets=leelab-datafiles,leelab-tibanna-
→˓log
invoke deploy_tibanna --sfn-type=unicorn --usergroup=default_3225

Dec 14, 2018 The latest version is now 0.5.5.

• Now memory, Disk space, CPU utilization are reported to CloudWatch at 1min interval from the
Awsem instance.

• To turn on Cloudwatch Dashboard (a collective visualization for all of the metrics combined), add
"cloudwatch_dashboard" : true to "config" field of the input execution json.

Dec 14, 2018 The latest version is now 0.5.4.

• Problem of EBS mounting with newer instances (e.g. c5, t3, etc) fixed.

• Now a common AMI is used for CWL v1, CWL draft3 and WDL and it is handled by
awsf/aws_run_workflow_generic.sh

– To use the new features, redeploy run_task_awsem lambda.

git pull
invoke deploy_core run_task_awsem --usergroup=<usergroup> # e.g.
→˓usergroup=default_3046

Dec 4, 2018 The latest version is now 0.5.3.

8 Chapter 1. What do I need to run pipelines using Tibanna?

https://github.com/4dn-dcic/tibanna/releases/tag/v0.5.8
https://github.com/4dn-dcic/tibanna/releases/tag/v0.5.7
https://github.com/4dn-dcic/tibanna/releases/tag/v0.5.6
https://github.com/4dn-dcic/tibanna/releases/tag/v0.5.5
https://github.com/4dn-dcic/tibanna/releases/tag/v0.5.4
https://github.com/4dn-dcic/tibanna/releases/tag/v0.5.3

tibanna Documentation, Release 4.0.0

• For WDL workflow executions, a more comprehensive log named <jobid>.debug.tar.gz is
collected and sent to the log bucket.

• A file named <jobid>.input.json is now sent to the log bucket at the start of all Pony execu-
tions.

• Space usage info is added at the end of the log file for WDL executions.

• bigbed files are registered to Higlass (pony).

• Benchmark for encode-chipseq supported. This includes double-nested array input support for
Benchmark.

• quality_metric_chipseq and quality_metric_atacseq created automatically
(Pony).

• An empty extra file array can be handled now (Pony).

• When Benchmark fails, now Tibanna returns which file is missing.

Nov 20, 2018 The latest version is now 0.5.2.

• User permission error for setting postrun jsons public fixed

• --no-randomize option for invoke setup_tibanna_env command to turn off adding
random number at the end of usergroup name.

• Throttling error upon mass file upload for md5/fastqc trigger fixed.

Nov 19, 2018 The latest version is now 0.5.1.

• Conditional alternative outputs can be assigned to a global output name (useful for WDL)

Nov 8, 2018 The latest version is now 0.5.0.

• WDL and Double-nested input array is now also supported for Pony.

Nov 7, 2018 The latest version is now 0.4.9.

• Files can be renamed upon downloading from s3 to an ec2 instance where a workflow will be exe-
cuted.

Oct 26, 2018 The latest version is now 0.4.8.

• Double-nested input file array is now supported for both CWL and WDL.

Oct 24, 2018 The latest version is now 0.4.7.

• Nested input file array is now supported for both CWL and WDL.

Oct 22, 2018 The latest version is now 0.4.6.

• Basic WDL support is implemented for Tibanna Unicorn!

Oct 11. 2018 The latest version is now 0.4.5.

• Killer CLIs invoke kill is available to kill specific jobs and invoke kill_all is available
to kill all jobs. They terminate both the step function execution and the EC2 instances.

1.4.2 Simple Example Pipeline

hello

We will run a command that prints hello world through Tibanna. To do this, we just need to prepare for a job description
json and run tibanna.

1.4. Tibanna 9

https://github.com/4dn-dcic/tibanna/releases/tag/v0.5.2
https://github.com/4dn-dcic/tibanna/releases/tag/v0.5.1
https://github.com/4dn-dcic/tibanna/releases/tag/v0.5.0
https://github.com/4dn-dcic/tibanna/releases/tag/v0.4.9
https://github.com/4dn-dcic/tibanna/releases/tag/v0.4.8
https://github.com/4dn-dcic/tibanna/releases/tag/v0.4.7
https://github.com/4dn-dcic/tibanna/releases/tag/v0.4.6
https://github.com/4dn-dcic/tibanna/releases/tag/v0.4.5

tibanna Documentation, Release 4.0.0

Job description

To run the pipeline on a specific input file using Tibanna, we need to create an job description file for each execution
(or a dictionary object if you’re using Tibanna as a python module).

The job description for running shell commands requires command and container_image fields. The former is
a list of commands and the latter is the Docker image name. Here, we use ubuntu:20.04 image and use an echo
command. Notice that double-quotes are escaped inside the command string. We’re passing an environment variable
$NAME through the field input_env. Also notice that the environment variable’s $ sign is prefixed with an escaped
backslash in the command string.

In the following example, the output file hello.txt in the same directory is copied to the output bucket
my-tibanna-test-bucket as some_sub_dirname/my_first_hello.txt.

This json can be found at https://github.com/4dn-dcic/tibanna/blob/master/examples/hello/hello_shell_input.json

{
"args": {

"container_image": "ubuntu:20.04",
"command": ["echo \"Hello world, \\$NAME!\" > hello.txt"],
"language": "shell",
"input_files": {},
"secondary_files": {},
"input_parameters": {},
"input_env": {"NAME": "Soo"},
"output_S3_bucket": "my-tibanna-test-bucket",
"output_target": {
"file:///data1/shell/hello.txt": "some_sub_dirname/my_first_hello.txt"

},
"secondary_output_target": {}

},
"config": {

"ebs_size": 10,
"instance_type": "t3.micro",
"EBS_optimized": true,
"password": "whateverpasswordworks",
"log_bucket": "my-tibanna-test-bucket"

}
}

Tibanna run

To run Tibanna,

1. Sign up for AWS

2. Install and configure awscli

see Before_using_Tibanna

3. Install Tibanna on your local machine

see Installation

4. Deploy Tibanna (link it to the AWS account)

see Installation

5. Run workflow as below.

10 Chapter 1. What do I need to run pipelines using Tibanna?

https://github.com/4dn-dcic/tibanna/blob/master/examples/hello/hello_shell_input.json
https://tibanna.readthedocs.io/en/latest/startaws.html
https://tibanna.readthedocs.io/en/latest/installation.html
https://tibanna.readthedocs.io/en/latest/installation.html

tibanna Documentation, Release 4.0.0

cd tibanna
tibanna run_workflow --input-json=examples/hello/hello_shell_input.json

6. Check status

tibanna stat

7. Check output file

Let’s try downloading the output file to check the content.

aws s3 cp s3://my-tibanna-test-bucket/some_sub_dirname/my_first_hello.txt
→˓.

The output file my_first_hello.txt would look as below.

Hello world, Soo!

md5

We will preprare a pipeline that calculated md5sum. To create this pipeline and run it through Tibanna, we will do the
following.

1. prepare for a component of the pipeline as a script (it could be a binary program)

2. package the components as a Docker image

3. create the pipeline description using either CWL or WDL.

4. prepare for a job definition that specifies pipeline, input files, parameters, resources, output target, etc.

5. run Tibanna.

Data

For input data, let’s use a file named somefastqfile.fastq.gz on a public bucket named
my-tibanna-test-input-bucket.

(You could also upload your own file to your own bucket and set up Tibanna to access that bucket.)

Pipeline component

Let’s try a very simple pipeline that calculates the md5sum of an input file. We’ll write a script named run.sh that
calculates two md5sum values for a gzipped input file, one for the compressed and one for the uncompressed content
of the file. The script creates an output file named report that contains two md5sum values. If the file is not gzipped,
it simply repeats a regular md5sum value twice.

The pipeline/script could look like this:

#!/bin/bash

file=$1

if [[$file =~ \.gz$]]
then

(continues on next page)

1.4. Tibanna 11

tibanna Documentation, Release 4.0.0

(continued from previous page)

MD_OUT=($(md5sum $file))
CONTENT_MD_OUT=($(gunzip -c $file | md5sum))

else
MD_OUT=($(md5sum $file))
CONTENT_MD_OUT=$MD_OUT

fi

MD=${MD_OUT[0]}
CONTENT_MD=${CONTENT_MD_OUT[0]}
echo "$MD" >> report
echo "$CONTENT_MD" >> report

Docker image

We already have a public docker image for this (duplexa/md5:v2) that contains script run.sh. You can find it on
Docker Hub: https://hub.docker.com/r/duplexa/md5/. If you want to use this public image, you can skip the following
steps.

To create your own, first you need to install docker on your (local) machine.

1. First, create a directory (e.g. named md5)

2. Put the above run.sh script in this directory.

3. Then, inside this directory create a file named Dockerfile with the following content.

start from ubuntu docker image
FROM ubuntu:20.04

general updates & installing necessary Linux components
RUN apt-get update -y && apt-get install -y unzip

copy the pipeline script into the image
(in this case, /usr/local/bin)
WORKDIR /usr/local/bin
COPY run.sh .
RUN chmod +x run.sh

default command
CMD ["run.sh"]

4. Then, build the docker image. You can use the same image name (duplexa/md5:v2) for this step, but it is
recommended to replace duplexa with your preferred Docker Hub account name, to be able to push the image
to Docker Hub later.

docker build -t my_account/md5:v2 .

5. Check the image

docker images

6. Push the image to Docker Hub. You will need an account on Docker Hub.

docker login
docker push my_account/md5:v2

12 Chapter 1. What do I need to run pipelines using Tibanna?

https://hub.docker.com/r/duplexa/md5/

tibanna Documentation, Release 4.0.0

Pipeline description

CWL

A sample CWL file is below. This CWL file can be found at https://raw.githubusercontent.com/
4dn-dcic/tibanna/master/examples/md5/md5.cwl. To use your own docker image, replace duplexa/
md5:v2 with your docker image name. To use your own CWL file, you’ll need to make sure it is
accessible via HTTP so Tibanna can download it with wget: If you’re using github, you could use
raw.githubusercontent.com like the link above.

cwlVersion: v1.0
baseCommand:
- run.sh

inputs:
- id: "#gzfile"

type:
- File

inputBinding:
position: 1

outputs:
- id: "#report"

type:
- File
outputBinding:
glob: report

hints:
- dockerPull: duplexa/md5:v2

class: DockerRequirement
class: CommandLineTool

The pipeline is ready!

WDL

Like CWL, WDL describes a pipeline structure. We describe individual runs (jobs) as separate json files.

A sample WDL file is below. This WDL file can be found at https://raw.githubusercontent.com/
4dn-dcic/tibanna/master/examples/md5/md5.wdl. To use your own docker image, replace duplexa/
md5:v2 with your docker image name. To use your own WDL file, you’ll need to make sure it is
accessible via HTTP so Tibanna can download it with wget: If you’re using github, you could use
raw.githubusercontent.com like the link above. Content-wise, this WDL does exactly the same as the
above CWL.

workflow md5 {
call md5_step

}

task md5_step {
File gzfile
command {

run.sh ${gzfile}
}
output {

File report = "report"

(continues on next page)

1.4. Tibanna 13

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/md5/md5.cwl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/md5/md5.cwl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/md5/md5.wdl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/md5/md5.wdl

tibanna Documentation, Release 4.0.0

(continued from previous page)

}
runtime {

docker: "duplexa/md5:v2"
}

}

The pipeline is ready!

Shell

A list of shell commands can also be used. It could be something like this.

run.sh input.gz

A shell command doesn’t have to be written in a file. The command itself can be passed to Tibanna as
part of the job description json.

Job description

To run the pipeline on a specific input file using Tibanna, we need to create an job description file for each execution
(or a dictionary object if you’re using Tibanna as a python module).

Job description for CWL

The example job description for CWL is shown below and it can also be found at https://raw.
githubusercontent.com/4dn-dcic/tibanna/master/examples/md5/md5_cwl_input.json.

{
"args": {

"app_name": "md5",
"app_version": "v2",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/tibanna/

→˓master/examples/md5",
"cwl_main_filename": "md5.cwl",
"cwl_child_filenames": [],
"cwl_version": "v1",
"input_files": {

"gzfile": {
"bucket_name": "my-tibanna-test-input-bucket",
"object_key": "somefastqfile.fastq.gz"

}
},
"secondary_files": {},
"input_parameters": {},
"output_S3_bucket": "my-tibanna-test-bucket",
"output_target": {

"report": "some_sub_dirname/my_first_md5_report"
},
"secondary_output_target": {}

},
"config": {

"ebs_size": 10,

(continues on next page)

14 Chapter 1. What do I need to run pipelines using Tibanna?

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/md5/md5_cwl_input.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/md5/md5_cwl_input.json

tibanna Documentation, Release 4.0.0

(continued from previous page)

"EBS_optimized": false,
"instance_type": "t3.micro",
"password": "whateverpasswordworks",
"log_bucket": "my-tibanna-test-bucket"

}
}

The json file specifies the input with gzfile, matching the name in CWL. In this exam-
ple it is somefastqfile.fastq.gz on bucket my-tibanna-test-input-bucket. The
output file will be renamed to some_sub_dirname/my_first_md5_report in a bucket
named my-tibanna-test-bucket. In the input json, we specify the CWL file with
cwl_main_filename and its url with cwl_directory_url. Note that the file name itself is not
included in the url).

We also specified in config, that we need 10GB space total (ebs_size) and we’re going to run an
EC2 instance (VM) of type t3.micro which comes with 1 CPU and 1GB memory.

Job description for WDL

The example job description for WDL is shown below and it can also be found at https://raw.
githubusercontent.com/4dn-dcic/tibanna/master/examples/md5/md5_wdl_input.json.

Content-wise, it is exactly the same as the one for CWL above. Notice that the only difference is that
1) you specify fields “wdl_main_filename”, “wdl_child_filenames” and “wdl_directory_url” instead of
“cwl_main_filename”, “cwl_child_filenames”, “cwl_directory_url”, and “cwl_version” in args, that 2)
you have to specify "language" : "wdl" in args and that 3) when you refer to an input or an
output, CWL allows you to use a global name (e.g. gzfile, report), whereas with WDL, you have
to specify the workflow name and the step name (e.g. md5.md5_step.gzfile, md5.md5_step.
report).

{
"args": {

"app_name": "md5",
"app_version": "v2",
"wdl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/tibanna/

→˓master/examples/md5",
"wdl_main_filename": "md5.wdl",
"wdl_child_filenames": [],
"language": "wdl",
"input_files": {

"md5.md5_step.gzfile": {
"bucket_name": "my-tibanna-test-input-bucket",
"object_key": "somefastqfile.fastq.gz"

}
},
"secondary_files": {},
"input_parameters": {},
"output_S3_bucket": "my-tibanna-test-bucket",
"output_target": {

"md5.md5_step.report": "some_sub_dirname/my_first_md5_report"
},
"secondary_output_target": {}

},
"config": {

"ebs_size": 10,
(continues on next page)

1.4. Tibanna 15

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/md5/md5_wdl_input.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/md5/md5_wdl_input.json

tibanna Documentation, Release 4.0.0

(continued from previous page)

"EBS_optimized": false,
"instance_type": "t3.micro",
"password": "whateverpasswordworks",
"log_bucket": "my-tibanna-test-bucket"

}
}

The json file specifies the input with md5.md5_step.gzfile, matching the name in WDL. In this
example it is somefastqfile.fastq.gz on bucket my-tibanna-test-input-bucket. The
output file will be renamed to some_sub_dirname/my_first_md5_report in a bucket named
my-tibanna-test-bucket. In the input json, we specify the WDL file with wdl_filename and
its url with wdl_directory_url. Note that the file name itself is not included in the url).

The config field is identical to the CWL input json. In config, we specify that we need 10GB space
total (ebs_size) and we’re going to run an EC2 instance (VM) of type t3.micro which comes with
1 CPU and 1GB memory.

Job description for shell

The job description for running shell commands requires command and container_image fields.
The former is a list of commands and the latter is the Docker image name.

The current working directory for running shell commands is /data1/shell and it can be requested
that input files be copied from S3 to this directory.

In the following example, input file s3://my-tibanna-test-input-bucket/
somefastqfile.fastq.gz is copied to /data1/shell as input.gz which matches the
input file in the command field (run.sh input.gz). The output file report in the same
directory is copied to the output bucket my-tibanna-test-bucket as some_sub_dirname/
my_first_md5_report.

This json file can be found at https://github.com/4dn-dcic/tibanna/blob/master/examples/md5/md5_shell_
input.json

{
"args": {

"container_image": "duplexa/md5:v2",
"command": ["run.sh input.gz"],
"language": "shell",
"input_files": {

"file:///data1/shell/input.gz": "s3://my-tibanna-test-input-bucket/
→˓somefastqfile.fastq.gz"

},
"secondary_files": {},
"input_parameters": {},
"output_S3_bucket": "my-tibanna-test-bucket",
"output_target": {

"file:///data1/shell/report": "some_sub_dirname/my_first_md5_report"
},
"secondary_output_target": {}

},
"config": {

"ebs_size": 10,
"instance_type": "t3.micro",
"EBS_optimized": false,

(continues on next page)

16 Chapter 1. What do I need to run pipelines using Tibanna?

https://github.com/4dn-dcic/tibanna/blob/master/examples/md5/md5_shell_input.json
https://github.com/4dn-dcic/tibanna/blob/master/examples/md5/md5_shell_input.json

tibanna Documentation, Release 4.0.0

(continued from previous page)

"password": "whateverpasswordworks",
"log_bucket": "my-tibanna-test-bucket"

}
}

Tibanna run

To run Tibanna,

1. Sign up for AWS

2. Install and configure awscli

see Before_using_Tibanna

3. Install Tibanna on your local machine

see Installation

4. Deploy Tibanna (link it to the AWS account)

see Installation

5. Run workflow as below.

For CWL,

cd tibanna
tibanna run_workflow --input-json=examples/md5/md5_cwl_input.json

or for WDL,

cd tibanna
tibanna run_workflow --input-json=examples/md5/md5_wdl_input.json

or for shell,

cd tibanna
tibanna run_workflow --input-json=examples/md5/md5_shell_input.json

6. Check status

tibanna stat

merge

This pipeline is an example of a nested input file array (e.g. [[f1, f2], [f3, f4]]). It consists of two steps,
paste and cat, the former pastes input files horrizontally and the latter concatenates input files vertically. Since
we’re using generic commands, we do not need to create a pipeline software component or a Docker image. We will
use the existing ubuntu:20.04 Docker image. So, we will just do the following three steps.

1. create the pipeline description using either CWL or WDL.

2. prepare for a job definition that specifies pipeline, input files, parameters, resources, output target, etc.

3. run Tibanna.

1.4. Tibanna 17

https://tibanna.readthedocs.io/en/latest/startaws.html
https://tibanna.readthedocs.io/en/latest/installation.html
https://tibanna.readthedocs.io/en/latest/installation.html

tibanna Documentation, Release 4.0.0

Data

For input data, let’s use files named smallfile1, smallfile2, smallfile3 and smallfile4 in a public
bucket named my-tibanna-test-input-bucket. Each of these files contains a letter (’a’, ‘b’, ‘c’, and ‘d’,
respectively). We feed an array of array of these files in the following format:

[[smallfile1, smallfile2], [smallfile3, smallfile4]]

(You could also upload your own file to your own bucket and set up Tibanna to access that bucket.)

Pipeline description

Thie pipeline takes an input ‘smallfiles’ which is an array of array of files. The input is scattered to the first step paste,
which means that each element of ‘smallfiles’ (i.e. each array of files) goes as the input of paste, and the outputs
will be gathered into an array before it is passed to the next step. From the input data above, there will be two runs
of paste and one will take in [smallfile1, smallfile2] and the other [smallfile3, smallfile4],
and the outputs will be combined into an array [<paste_output1>, <paste_output2>]. The second step, cat takes in
this array and concatenates them.

So, the output of the two paste runs would look like:

a b

c d

And the output of the cat (or the output of the workflow) would look like:

a b
c d

CWL

Since this is a multi-step pipeline, we use three CWL files, merge.cwl (master workflow CWL) and
two other CWL files paste.cwl and cat.cwl that are called by merge.cwl.

These CWL files can be found at https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/
merge/merge.cwl, https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/paste.cwl

18 Chapter 1. What do I need to run pipelines using Tibanna?

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/merge.cwl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/merge.cwl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/paste.cwl

tibanna Documentation, Release 4.0.0

and https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/cat.cwl. To use your
own CWL file, you’ll need to make sure it is accessible via HTTP so Tibanna can download it
with wget: If you’re using github, you could use raw.githubusercontent.com like the link above.
Alternatively, you can have tham as a local file and provide cwl_directory_local instead of
cwl_directory_url.

The following is merge.cwl. It is of class ‘workflow’ and defines inputs, outputs and steps. For the
other two CWL files (paste.cwl and cat.cwl), see the links above.

class: Workflow
cwlVersion: v1.0
inputs:

smallfiles:
type:
type: array
items:
type: array
items: File

outputs:
-

id: "#merged"
type: File
outputSource: "#cat/concatenated"

steps:
-

id: "#paste"
run: "paste.cwl"
in:
-

id: "#paste/files"
source: "smallfiles"

scatter: "#paste/files"
out:
-

id: "#paste/pasted"
-

id: "#cat"
run: "cat.cwl"
in:
-

id: "#cat/files"
source: "#paste/pasted"

out:
-

id: "#cat/concatenated"
requirements:
-

class: "ScatterFeatureRequirement"

The pipeline is ready!

WDL

WDL describes this pipeline in one file and it can be found at https://raw.githubusercontent.com/4dn-dcic/
tibanna/master/examples/merge/merge.wdl. To use your own WDL file, you’ll need to make sure it is
accessible via HTTP so Tibanna can download it with wget: If you’re using github, you could use

1.4. Tibanna 19

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/cat.cwl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/merge.wdl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/merge.wdl

tibanna Documentation, Release 4.0.0

raw.githubusercontent.com like the link above. Content-wise, this WDL does exactly the same as the
above CWL.

workflow merge {
Array[Array[File]] smallfiles = []
scatter(smallfiles_ in smallfiles) {

call paste {input: files = smallfiles_}
}
call cat {input: files = paste.pasted}
output {

File merged = cat.concatenated
}

}

task paste {
Array[File] files = []
command {

paste ${sep=" " files} > pasted
}
output {

File pasted = "pasted"
}
runtime {

docker: "ubuntu:20.04"
}

}

task cat {
Array[File] files = []
command {

cat ${sep=" " files} > concatenated
}
output {

File concatenated = "concatenated"
}
runtime {

docker: "ubuntu:20.04"
}

}

The pipeline is ready!

Job description

To run the pipeline on a specific input file using Tibanna, we need to create an job description file for each execution
(or a dictionary object if you’re using Tibanna as a python module).

Job description for CWL

The example job description for CWL is shown below and it can also be found at https://raw.
githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/merge_cwl_input.json.

{
"args": {

"app_name": "merge",

(continues on next page)

20 Chapter 1. What do I need to run pipelines using Tibanna?

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/merge_cwl_input.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/merge_cwl_input.json

tibanna Documentation, Release 4.0.0

(continued from previous page)

"app_version": "",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/tibanna/

→˓master/examples/merge",
"cwl_main_filename": "merge.cwl",
"cwl_child_filenames": ["paste.cwl", "cat.cwl"],
"cwl_version": "v1",
"input_files": {

"smallfiles": {
"bucket_name": "my-tibanna-test-input-bucket",
"object_key": [["smallfile1", "smallfile2"], ["smallfile3",

→˓"smallfile4"]]
}

},
"secondary_files": {},
"input_parameters": {},
"output_S3_bucket": "my-tibanna-test-bucket",
"output_target": {

"merged": "some_sub_dirname/my_first_merged_file"
},
"secondary_output_target": {}

},
"config": {

"ebs_size": 10,
"EBS_optimized": true,
"instance_type": "t3.micro",
"password": "whateverpasswordworks",
"log_bucket": "my-tibanna-test-bucket"

}
}

The json file specifies the input nested file array (“smallfiles”) ([["smallfile1",
"smallfile2"], ["smallfile3", "smallfile4"]]), matching the name in CWL.
The output file will be renamed to some_sub_dirname/my_first_merged_file in a
bucket named my-tibanna-test-bucket. In the input json, we specify the CWL file
with cwl_main_filename and its url with cwl_directory_url. Note that the file
name itself is not included in the url). Note that child CWL files are also specified in this case
("cwl_child_filenames": ["paste.cwl", "cat.cwl"]).

We also specified in config, that we need 10GB space total (ebs_size) and we’re going to run an
EC2 instance (VM) of type t3.micro which comes with 1 CPU and 1GB memory.

Job description for WDL

The example job description for WDL is shown below and it can also be found at https://raw.
githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/merge_wdl_input.json.

Content-wise, it is exactly the same as the one for CWL above. Notice that the only difference is that
1) you specify fields “wdl_main_filename”, “wdl_child_filenames” and “wdl_directory_url” instead of
“cwl_main_filename”, “cwl_child_filenames”, “cwl_directory_url”, and “cwl_version” in args, that 2)
you have to specify "language" : "wdl" in args and that 3) when you refer to an input or an
output, CWL allows you to use a global name (e.g. smallfiles, merged), whereas with WDL, you
have to specify the workflow name (e.g. merge.smallfiles, merge.merged). We omit the step
names in this case because we use global variables that are passed to and from the steps.

1.4. Tibanna 21

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/merge_wdl_input.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge/merge_wdl_input.json

tibanna Documentation, Release 4.0.0

{
"args": {

"app_name": "merge",
"app_version": "",
"language": "wdl",
"wdl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/tibanna/

→˓master/examples/merge",
"wdl_main_filename": "merge.wdl",
"wdl_child_filenames": [],
"input_files": {

"merge.smallfiles": {
"bucket_name": "my-tibanna-test-input-bucket",
"object_key": [["smallfile1", "smallfile2"], ["smallfile3",

→˓"smallfile4"]]
}

},
"secondary_files": {},
"input_parameters": {},
"output_S3_bucket": "my-tibanna-test-bucket",
"output_target": {

"merge.merged": "some_sub_dirname/my_first_merged_file"
},
"secondary_output_target": {}

},
"config": {

"ebs_size": 10,
"EBS_optimized": true,
"instance_type": "t3.micro",
"password": "whateverpasswordworks",
"log_bucket": "my-tibanna-test-bucket"

}
}

Tibanna run

To run Tibanna,

1. Sign up for AWS

2. Install and configure awscli

see Before_using_Tibanna

3. Install Tibanna on your local machine

see Installation

4. Deploy Tibanna (link it to the AWS account)

see Installation

5. Run workflow as below.

For CWL,

cd tibanna
tibanna run_workflow --input-json=examples/merge/merge_cwl_input.json

or for WDL,

22 Chapter 1. What do I need to run pipelines using Tibanna?

https://tibanna.readthedocs.io/en/latest/startaws.html
https://tibanna.readthedocs.io/en/latest/installation.html
https://tibanna.readthedocs.io/en/latest/installation.html

tibanna Documentation, Release 4.0.0

cd tibanna
tibanna run_workflow --input-json=examples/merge/merge_wdl_input.json

6. Check status

tibanna stat

merge_and_cut

This pipeline is an example of a double-nested input file array (e.g. [[[f1, f2], [f3, f4]], [[f5, f6],
[f7, f8]]]). It consists of a subworkflow called merge (previous section) and an extra step called cut. Merge
consists of two steps, paste and cat, the former pastes input files horrizontally and the latter concatenates input
files vertically. Cut prints the first letter of every line from a list of files. Since we’re using generic commands, we
do not need to create a pipeline software component or a Docker image. We will use the existing ubuntu:20.04
Docker image. So, we will just do the following three steps.

1. create the pipeline description using either CWL or WDL.

2. prepare for a job definition that specifies pipeline, input files, parameters, resources, output target, etc.

3. run Tibanna.

Data

For input data, let’s use files named smallfile1, smallfile2, . . . smallfile8 in a public bucket named
my-tibanna-test-input-bucket. Each of these files contains a letter (’a’, ‘b’, . . . , ‘h’, respectively). We
feed an array of array of array of these files in the following format:

[
[[smallfile1, smallfile2], [smallfile3, smallfile4]],
[[smallfile5, smallfile6], [smallfile7, smallfile8]]

]

(You could also upload your own file to your own bucket and set up Tibanna to access that bucket.)

1.4. Tibanna 23

tibanna Documentation, Release 4.0.0

Pipeline description

Thie pipeline takes an input ‘smallfiles’ which is an array of array of array of files. The 3D input is scattered into 2D
arrays to the first subworkflow merge, which internally scatters each of the 2D arrays into 1D at the step paste and
put it through another step cat which produces a single file. Therefore, each 2D array has an output of a single file.
The result of these outputs are combined into an array and fed to the extra step cut.

CWL

The structure of this pipeline is a bit complex and we use five CWL files, three of which are identical to
the ones from merge workflow example (merge.cwl, paste.cwl, cat.cwl) since we’re using the
merge workflow as a subworkflow. There is one master CWL (merge_and_cut.cwl) and an extra
step CWL, cut.cwl.

These CWL files can be found at the following URLs:

• https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_
cut.cwl

• https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge.cwl

• https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/paste.cwl

• https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/cat.cwl

24 Chapter 1. What do I need to run pipelines using Tibanna?

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut.cwl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut.cwl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge.cwl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/paste.cwl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/cat.cwl

tibanna Documentation, Release 4.0.0

• https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/cut.cwl

To use your own CWL file, you’ll need to make sure it is accessible via HTTP so Tibanna can download
it with wget: If you’re using github, you could use raw.githubusercontent.com like the link above.

The following is merge_and_cut.cwl.

class: Workflow
cwlVersion: v1.0
inputs:

smallfiles:
type:
type: array
items:
type: array
items:
type: array
items: File

outputs:
-

id: "#merged_and_cut"
type: File
outputSource: "#cut/cut1"

steps:
-

id: "#merge"
run: "merge.cwl"
in:
-

id: "#merge/smallfiles"
source: "smallfiles"

scatter: "#merge/smallfiles"
out:
-

id: "#merge/merged"
-

id: "#cut"
run: "cut.cwl"
in:
-

id: "#cut/files"
source: "#merge/merged"

out:
-

id: "#cut/cut1"
requirements:
-

class: "ScatterFeatureRequirement"
-

class: "SubworkflowFeatureRequirement"

The pipeline is ready!

WDL

WDL describes this pipeline in two files, one main file and a subworkflow file. The main file can
be found at https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_

1.4. Tibanna 25

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/cut.cwl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut.wdl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut.wdl

tibanna Documentation, Release 4.0.0

and_cut.wdl and the subworkflow file is identical to the WDL file used in the example of merge (https:
//raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge.wdl). To use your
own WDL file, you’ll need to make sure it is accessible via HTTP so Tibanna can download it with wget:
If you’re using github, you could use raw.githubusercontent.com like the link above. Content-wise, this
WDL does exactly the same as the above CWL. Below is the main WDL.

import "merge.wdl" as sub

workflow merge_and_cut {
Array[Array[Array[File]]] smallfiles = []
scatter(smallfiles_ in smallfiles) {

call sub.merge {input: smallfiles = smallfiles_}
}
call cut {input: files = merge.merged}
output {

File merged_and_cut = cut.cut1
}

}

task cut {
Array[File] files = []
command {

cut -c1 ${sep=" " files} > cut1
}
output {

File cut1 = "cut1"
}
runtime {

docker: "ubuntu:20.04"
}

}

The pipeline is ready!

Job description

To run the pipeline on a specific input file using Tibanna, we need to create an job description file for each execution
(or a dictionary object if you’re using Tibanna as a python module).

Job description for CWL

The example job description for CWL is shown below and it can also be found at https:
//raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut_cwl_
input.json.

{
"args": {

"app_name": "merge_and_cut",
"app_version": "",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/tibanna/

→˓master/examples/merge_and_cut",
"cwl_main_filename": "merge_and_cut.cwl",
"cwl_child_filenames": ["merge.cwl", "paste.cwl", "cat.cwl", "cut.cwl"],
"cwl_version": "v1",

(continues on next page)

26 Chapter 1. What do I need to run pipelines using Tibanna?

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut.wdl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut.wdl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge.wdl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge.wdl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut_cwl_input.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut_cwl_input.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut_cwl_input.json

tibanna Documentation, Release 4.0.0

(continued from previous page)

"input_files": {
"smallfiles": {
"bucket_name": "my-tibanna-test-input-bucket",
"object_key": [

[["smallfile1", "smallfile2"], ["smallfile3", "smallfile4"]],
[["smallfile5", "smallfile6"], ["smallfile7", "smallfile8"]]

]
}

},
"secondary_files": {},
"input_parameters": {},
"output_S3_bucket": "my-tibanna-test-bucket",
"output_target": {

"merged_and_cut": "some_sub_dirname/my_first_merged_and_cut_file"
},
"secondary_output_target": {}

},
"config": {

"ebs_size": 10,
"EBS_optimized": true,
"instance_type": "t3.micro",
"password": "whateverpasswordworks",
"log_bucket": "my-tibanna-test-bucket"

}
}

The json file specifies the input double-nested file array (“smallfiles”), matching the name in CWL.
The output file will be renamed to some_sub_dirname/my_first_merged_and_cut_file
in a bucket named my-tibanna-test-bucket. In the input json, we specify the CWL
file with cwl_main_filename and its url with cwl_directory_url. Note that the
file name itself is not included in the url). Note that child CWL files are also specified
in this case ("cwl_child_filenames": ["merge.cwl", "paste.cwl", "cat.cwl",
"cut.cwl"]).

We also specified in config, that we need 10GB space total (ebs_size) and we’re going to run an
EC2 instance (VM) of type t3.micro which comes with 1 CPU and 1GB memory.

Job description for WDL

The example job description for WDL is shown below and it can also be found at https:
//raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut_wdl_
input.json.

Content-wise, it is exactly the same as the one for CWL above. Notice that the only difference is that
1) you specify fields “wdl_main_filename”, “wdl_child_filenames” and “wdl_directory_url” instead of
“cwl_main_filename”, “cwl_child_filenames”, “cwl_directory_url”, and “cwl_version” in args, that 2)
you have to specify "language" : "wdl" in args and that 3) when you refer to an input or an
output, CWL allows you to use a global name (e.g. smallfiles, merged), whereas with WDL,
you have to specify the workflow name (e.g. merge_and_cut.smallfiles, merge_and_cut.
merged_and_cut). We omit the step names in this case because we use global variables that are passed
to and from the steps.

{
"args": {

(continues on next page)

1.4. Tibanna 27

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut_wdl_input.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut_wdl_input.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/merge_and_cut/merge_and_cut_wdl_input.json

tibanna Documentation, Release 4.0.0

(continued from previous page)

"app_name": "merge_and_cut",
"app_version": "",
"language": "wdl",
"wdl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/tibanna/

→˓master/examples/merge_and_cut",
"wdl_main_filename": "merge_and_cut.wdl",
"wdl_child_filenames": ["merge.wdl"],
"input_files": {

"merge_and_cut.smallfiles": {
"bucket_name": "my-tibanna-test-input-bucket",
"object_key": [

[["smallfile1", "smallfile2"], ["smallfile3", "smallfile4"]],
[["smallfile5", "smallfile6"], ["smallfile7", "smallfile8"]]

]
}

},
"secondary_files": {},
"input_parameters": {},
"output_S3_bucket": "my-tibanna-test-bucket",
"output_target": {

"merge_and_cut.merged_and_cut": "some_sub_dirname/my_first_merged_and_
→˓cut_file"

},
"secondary_output_target": {}

},
"config": {

"ebs_size": 10,
"EBS_optimized": true,
"instance_type": "t3.micro",
"password": "whateverpasswordworks",
"log_bucket": "my-tibanna-test-bucket"

}
}

Tibanna run

To run Tibanna,

1. Sign up for AWS

2. Install and configure awscli

see Before_using_Tibanna

3. Install Tibanna on your local machine

see Installation

4. Deploy Tibanna (link it to the AWS account)

see Installation

5. Run workflow as below.

For CWL,

cd tibanna
tibanna run_workflow --input-json=examples/merge_and_cut/merge_and_cut_
→˓cwl_input.json (continues on next page)

28 Chapter 1. What do I need to run pipelines using Tibanna?

https://tibanna.readthedocs.io/en/latest/startaws.html
https://tibanna.readthedocs.io/en/latest/installation.html
https://tibanna.readthedocs.io/en/latest/installation.html

tibanna Documentation, Release 4.0.0

(continued from previous page)

or for WDL,

cd tibanna
tibanna run_workflow --input-json=examples/merge_and_cut/merge_and_cut_
→˓wdl_input.json

6. Check status

tibanna stat

cond_merge

This pipeline is an example of a conditional output. It chooses between two tasks, paste and cat, depending on
the length of the input array (i.e. the number of input files). The former pastes input files horrizontally and the latter
concatenates input files vertically. Since we’re using generic commands, we do not need to create a pipeline software
component or a Docker image. We will use the existing ubuntu:20.04 Docker image. So, we will just do the
following three steps.

1. create the pipeline description using WDL. (CWL does not support conditional statements)

2. prepare for a job definition that specifies pipeline, input files, parameters, resources, output target, etc.

3. run Tibanna.

Data

For input data, let’s use files named smallfile1, smallfile2, smallfile3 and smallfile4 in a public
bucket named my-tibanna-test-input-bucket. Each of these files contains a letter (’a’, ‘b’, ‘c’, and ‘d’,
respectively). We feed an array of these files in the following formats (one with length 4, another with length 2):

[smallfile1, smallfile2, smallfile3, smallfile4]

[smallfile1, smallfile2]

(You could also upload your own file to your own bucket and set up Tibanna to access that bucket.)

Pipeline description

This pipeline takes an input file array. If the length of the array is larger than 2 (more than 2 files), it runs paste. If
it is smaller than or equal to 2, it runs cat. The former creates a pasted file and the latter creates a concatenated file.

In the former case (paste), the output would look like this:

a b c d

In the latter case (cat), the output would look like:

a
b

1.4. Tibanna 29

tibanna Documentation, Release 4.0.0

WDL

WDL describes this pipeline in one file and it can be found at https://raw.githubusercontent.com/4dn-dcic/
tibanna/master/examples/cond_merge/cond_merge.wdl. To use your own WDL file, you’ll need to make
sure it is accessible via HTTP so Tibanna can download it with wget: If you’re using github, you could
use raw.githubusercontent.com like the link above. Content-wise, this WDL does exactly the same as the
above CWL.

workflow cond_merge {
Array[File] smallfiles = []
if(length(smallfiles)>2) {

call paste {input: files = smallfiles}
}
if(length(smallfiles)<=2) {

call cat {input: files = smallfiles}
}

}

task paste {
Array[File] files = []
command {

paste ${sep=" " files} > pasted
}
output {

File pasted = "pasted"
}
runtime {

docker: "ubuntu:20.04"
}

}

task cat {
Array[File] files = []
command {

cat ${sep=" " files} > concatenated
}
output {

File concatenated = "concatenated"
}
runtime {

docker: "ubuntu:20.04"
}

}

The pipeline is ready!

Job description

To run the pipeline on a specific input file using Tibanna, we need to create an job description file for each execution
(or a dictionary object if you’re using Tibanna as a python module).

Job description for WDL

If the user does not know (or does not want to manually control) which of the two outputs should be
sent to S3, one can specify a global name for this output and associate it with the alternative output

30 Chapter 1. What do I need to run pipelines using Tibanna?

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/cond_merge/cond_merge.wdl
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/cond_merge/cond_merge.wdl

tibanna Documentation, Release 4.0.0

names. For example, in this case, we could set up a global name to be cond_merge.cond_merged
and associate with two alternative names cond_merge.paste.pasted and cond_merge.cat.
concatenated. This way, either of the two will be recognized as cond_merge.cond_merged
and will be treated as if it was not a conditional output from the user’s perspective.

An example job description for WDL is shown below and it can also be found at https://raw.
githubusercontent.com/4dn-dcic/tibanna/master/examples/cond_merge/cond_merge_wdl_input.json.
Another example with two input files can be found at https://raw.githubusercontent.com/
4dn-dcic/tibanna/master/examples/cond_merge/cond_merge_wdl_input2.json. Note the field
alt_cond_output_argnames under args.

{
"args": {

"app_name": "cond_merge",
"app_version": "",
"language": "wdl",
"wdl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/tibanna/

→˓master/examples/cond_merge",
"wdl_main_filename": "cond_merge.wdl",
"wdl_child_filenames": [],
"input_files": {

"cond_merge.smallfiles": {
"bucket_name": "my-tibanna-test-input-bucket",
"object_key": ["smallfile1", "smallfile2", "smallfile3", "smallfile4

→˓"]
}

},
"secondary_files": {},
"input_parameters": {},
"output_S3_bucket": "my-tibanna-test-bucket",
"output_target": {

"cond_merge.cond_merged": "some_sub_dirname/my_first_cond_merged_file
→˓"

},
"alt_cond_output_argnames": {

"cond_merge.cond_merged": ["cond_merge.paste.pasted", "cond_merge.
→˓cat.concatenated"]

},
"secondary_output_target": {}

},
"config": {

"ebs_size": 10,
"EBS_optimized": true,
"instance_type": "t3.micro",
"password": "whateverpasswordworks",
"log_bucket": "my-tibanna-test-bucket"

}
}

Tibanna run

To run Tibanna,

1. Sign up for AWS

2. Install and configure awscli

see Before_using_Tibanna

1.4. Tibanna 31

https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/cond_merge/cond_merge_wdl_input.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/cond_merge/cond_merge_wdl_input.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/cond_merge/cond_merge_wdl_input2.json
https://raw.githubusercontent.com/4dn-dcic/tibanna/master/examples/cond_merge/cond_merge_wdl_input2.json
https://tibanna.readthedocs.io/en/latest/startaws.html

tibanna Documentation, Release 4.0.0

3. Install Tibanna on your local machine

see Installation

4. Deploy Tibanna (link it to the AWS account)

see Installation

5. Run workflow as below.

cd tibanna
tibanna run_workflow --input-json=examples/cond_merge/cond_merge_wdl_
→˓input.json
tibanna run_workflow --input-json=examples/cond_merge/cond_merge_wdl_
→˓input2.json

6. Check status

tibanna stat

1.4.3 Check Before using Tibanna

• Before using Tibanna, one must have an AWS account.

• An admin user with access key and secret key sets up and deploys Tibanna for a specific user group and
specific buckets.

• A regular user, with their own access key and secret key, associated with the user group can upload data to the
bucket and run jobs using Tibanna.

• In addition, your workflows must be written in either CWL (Common Workflow Language) or WDL (Workflow
Description Language) which point to a docker image on docker hub or AWS ECR (Elastic Container Registry)
on the same AWS account. Alternatively, you can use Snakemake workflow to be run as a whole on a single
EC2 machine, inside a Snakemake docker image. A CWL/WDL/Snakemake file can be a public url, a local file,
or on a (public or private) S3 bucket.

1.4.4 Installation

Tibanna’s installation is two-step - installation of the tibanna package on the local machine and deployment of its
serverless components to the AWS Cloud. Since the second step is separated from the first step, one may deploy as
many copies of Tibanna as one wishes for different projects, with different bucket permissions and users.

Installing Tibanna package

Tibanna works with the following Python and pip versions.

• Python 3.8, 3.9, 3.10

• Pip 9, 10, 18, 19, 20

Install Tibanna on your local machine or server from which you want to send commands to run workflows.

First, create a virtual environment.

create a virtual environment
virtualenv -p python3.8 ~/venv/tibanna
source ~/venv/tibanna/bin/activate

32 Chapter 1. What do I need to run pipelines using Tibanna?

https://tibanna.readthedocs.io/en/latest/installation.html
https://tibanna.readthedocs.io/en/latest/installation.html

tibanna Documentation, Release 4.0.0

Then, install Tibanna.

pip install tibanna

Alternatively, use git clone followed by make install

Alternatively installing tibanna package from github repo
git clone https://github.com/4dn-dcic/tibanna
cd tibanna
make install

Starting version 1.0.0, there is also a Docker image that contains the same version of tibanna as the image tag. This
image is used on the EC2 AWSEM instances and not for a local use. The image contains many other things including
Docker, Singularity, Cromwell, cwltool, etc. in addition to Tibanna and therefore not recommended, but in case the
above two somehow didn’t work in your environment, and if you have Docker, you could try:

docker run -it 4dndcic/tibanna-awsf:1.0.0 bash
You could use a different version tag instead of 1.0.0
you can also mount your local directories and files as needed.

AWS configuration

To deploy and use Tibanna on the AWS Cloud, you must first have an AWS account.

Deployment requires an admin user credentials. For more details, check out https://aws.amazon.com/.

To only run workflows using Tibanna, you need a regular user credentials.

Once you have the user credentials, we can add that information to the local machine using one of the following three
methods:

1) using awscli

2) by manually creating two files in ~/.aws.

3) setting AWS environment variables

Details of each method is described below. Tibanna uses this information to know that you have the permission to
deploy to your AWS account.

1) using awscli

first install awscli - see below if this fails
pip install awscli

configure AWS credentials and config through awscli
aws configure

Type in your keys, region and output format (‘json’) as below.

AWS Access Key ID [None]: <your_aws_key>
AWS Secret Access Key [None]: <your_aws_secret_key>
Default region name [None]: us-east-1
Default output format [None]: json

2) by manually creating two files in ~/.aws

Alternatively, (in case you can’t install awscli for any reason (e.g. PyYAML version conflict)), do the following
manually to set up AWS credentials and config.

1.4. Tibanna 33

https://aws.amazon.com/

tibanna Documentation, Release 4.0.0

mkdir ~/.aws

Add the following to ~/.aws/credentials.

[default]
aws_access_key_id = <your_aws_key>
aws_secret_access_key = <your_aws_secret_key>

Add the following to ~/.aws/config.

[default]
region = us-east-1
output = json

3) setting AWS environment variables

Alternatively, you can directly set AWS credentials and config as environment variables (instead of creating ~/.aws/
credentials and ~/.aws/config).

export AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY>
export AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
export AWS_DEFAULT_REGION=<AWS_DEFAULT_REGION>

Tibanna environment variables

Note: starting 0.9.0, users do not need to export AWS_ACCOUNT_NUMBER and TIBANNA_AWS_REGION any
more.

Deploying Tibanna Unicorn to AWS

Note: You have to have admin permission to deploy unicorn to AWS and add user to a tibanna permission group

If you’re using a forked Tibanna repo or want to use a specific branch, set the following variables as well before
deployment. They will be used by the EC2 (VM) instances to grab the right scripts from the awsf directory of the
right tibanna repo/branch. If you’re using default (4dn-dcic/tibanna, master), no need to set these variables.

only if you're using a forked repo
export TIBANNA_REPO_NAME=<git_hub_repo_name> # (default: 4dn-dcic/tibanna)
export TIBANNA_REPO_BRANCH=<git_hub_branch_name> # (default: master)

If you’re using an external bucket with a separate credential, you can give the permission to this bucket to tibanna
unicorn during deployment by setting the following additional environment variables before deploying. This credential
will be added as profile user1 on the EC2 instances to run. This profile name can be added to input file specifications
for the files that require this external credential. For most cases, this part can be ignored.

only if you're using an external bucket with a separate credential
export TIBANNA_PROFILE_ACCESS_KEY=<external_profile_access_key>
export TIBANNA_PROFILE_SECRET_KEY=<external_profile_secret_key>

Then, deploy a copy of Tibanna as below.

If you want to operate multiple copies of Tibanna (e.g. for different projects), you can try to name each copy of
Tibanna using --usergroup option (by default the name is default_<random_number>).

Here, we’re naming it hahaha - come up with a better name if you want to.

34 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

tibanna deploy_unicorn --usergroup=hahaha
This will give permission to only public tibanna test buckets.
To add permission to other private or public buckets, use --buckets option.

Run a test workflow

The above command will first create a usergroup that shares the permission to use a single tibanna environment. Then,
it will deploy a tibanna instance (step function / lambda). The name of the tibanna step function is added to your
~/.bashrc file. Check that you can see the following line in the ~/.bashrc file.

check your ~/.bashrc file
tail -1 ~/.bashrc

You should be able to see the following.

export TIBANNA_DEFAULT_STEP_FUNCTION_NAME=tibanna_unicorn_hahaha

To set this environmental variable,

source ~/.bashrc

You can run a workflow using Tibanna if you’re an admin user or if you are a user that belongs to the user group. The
following command launches a workflow run. See below for what to feed as input json, which contains information
about what buckets to use, where to find the workflow CWL/WDL or what command to run inside a docker container,
what the output file names should be, etc.

tibanna run_workflow --input-json=<input_json_for_a_workflow_run>

As an example you can try to run a test workflow as below. This one uses only public buckets
my-tibanna-test-bucket and my-tibanna-test-input-bucket. The public has permission to these
buckets - the objects will expire in 1 day and others may have access to the same bucket and read/overwrite/delete
your objects. Please use it only for initial testing of Tibanna.

First, create the input json file my_test_tibanna_input.json as below.

{
"args": {
"app_name": "md5",
"app_version": "0.2.6",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/0.

→˓2.6/cwl_awsem_v1/",
"cwl_main_filename": "md5.cwl",
"cwl_version": "v1",
"input_files": {

"input_file": {
"bucket_name": "my-tibanna-test-input-bucket",
"object_key": "somefastqfile.fastq.gz"

}
},
"output_S3_bucket": "my-tibanna-test-bucket",
"output_target": {

"report": "my_outdir/report"
}

},
"config": {

(continues on next page)

1.4. Tibanna 35

tibanna Documentation, Release 4.0.0

(continued from previous page)

"run_name": "md5-public-test",
"log_bucket": "my-tibanna-test-bucket"

}
}

tibanna run_workflow --input-json=my_test_tibanna_input.json

Deploying Tibanna Unicorn with private buckets

Note: You have to have admin permission to deploy unicorn to AWS and add user to a tibanna permission group

Creating a bucket

You can skip this section if you want to use existing buckets for input/output/logs.

If you are an admin or have a permission to create a bucket, you can either use the AWS Web Console or use the
following command using awscli. For example, a data (input/output) bucket and a tibanna log bucket may be created.
You could also separate input and output buckets, or have multiple input buckets, etc. Bucket names are globally
unique.

aws s3api create-bucket --bucket <bucketname>

Example

aws s3api create-bucket --bucket montys-data-bucket # choose your own data bucket
→˓name
aws s3api create-bucket --bucket montys-tibanna-log-bucket # choose your own log
→˓bucket name

Upload your files to the data bucket by using the following

aws s3 cp <filename> s3://<bucketname>/<filename>
aws s3 cp --recursive <dirname> s3://<bucketname>/<dirname>

Example

aws s3 cp somebamfile.bam s3://montys-data-bucket/somebamfile.bam
aws s3 cp --recursive montys-input-data-folder s3://montys-data-bucket/montys-input-
→˓data-folder

Deploying Tibanna

Let’s try setting up Tibanna that uses private buckets. As you deploy your tibanna, add your private bucket names.
Again, you can name this new copy of Tibanna by specifying a new user group (e.g. lalala.)

tibanna deploy_unicorn --buckets=<bucket1>,<bucket2>,... --usergroup=lalala

Example

36 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

tibanna deploy_unicorn --buckets=montys-data-bucket,montys-tibanna-log-bucket \
--usergroup=lalala

no space between bucket names!

Export the environmental variable for Tibanna step function name.

source ~/.bashrc

Create an input json using your buckets.

Then, run workflow.

tibanna run_workflow --input-json=<input_json>

Now we have two different copies of deployed Tibanna. According to your ~/.bashrc, the latest deployed copy is
your default copy. However, if you want to run a workflow on a different copy of Tibanna, use --sfn option. For
example, now your default copy is lalala (the latest one), but you want to run our workflow on hahaha. Then, do
the following.

tibanna run_workflow --input-json=<input_json> --sfn=tibanna_unicorn_hahaha

User permission

To deploy Tibanna, one must be an admin for an AWS account. To run a workflow, the user must be either an admin
or in the IAM group tibanna_<usergroup>. To add a user to a user group, you have to be an admin. To do this,
use the tibanna command.

tibanna users

You will see the list of users.

Example

user tibanna_usergroup
soo
monty

The following command will add a user to a specific user group.

tibanna add_user --user=<user> --usergroup=<usergroup>

For example, if you have a user named monty and you want to give permission to this user to user Tibanna lalala.
This will give this user permission to run and monitor the workflow, access the buckets that Tibanna usergroup
lalala was given access to through tibanna deploy_unicorn --buckets=<b1>,<b2>,...

tibanna add_user --user=monty --usergroup=lalala

Check users again.

tibanna users

user tibanna_usergroup
soo
monty lalala

1.4. Tibanna 37

tibanna Documentation, Release 4.0.0

Now monty can use tibanna_unicorn_lalala and access buckets montys-data-bucket and
montys-tibanna-log-bucket

1.4.5 Command-line tools

Listing all commands

To list all available commands, use tibanna -h

tibanna -h

Checking Tibanna version

To check Tibanna version,

tibanna -v

Admin only commands

The following commands require admin previlege to one’s AWS account.

deploy_unicorn

To create an instance of tibanna unicorn (step function + lambdas)

tibanna deploy_unicorn [<options>]

Options

-b|--buckets=<bucket1,bucket2,...> List of buckets to use for tibanna runs.
The associated lambda functions, EC2
instances and user group will be given
permission to these buckets.

-S|--no-setup Skip setup buckets/permissions and just
redeploy tibanna step function and lambdas.
This is useful when upgrading the existing
tibanna that's already set up.

-E|--no-setenv Do not overwrite TIBANNA_DEFAULT_STEP_
→˓FUNCTION_NAME

environmental variable in your bashrc.

-s|--suffix=<suffixname> Using suffix helps deploying various dev-
→˓version

tibanna. The step function and lambda
→˓functions

will have the suffix. Having a different
→˓suffix

does not create a new user group with a
→˓different

permission (for this purpose use --
→˓usergroup). (continues on next page)

38 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

-g|--usergroup=<usergroup> Tibanna usergroup to share the permission to
→˓access

buckets and run jobs

-P|--do-not-delete-public-access-block Do not delete public access block from
→˓buckets

(this way postrunjson and metrics reports
→˓will

not be public)

-C|–deploy-costupdater Deploys an additional step function that will periodically check, if the cost for a work-
flow run can be retrieved from AWS. If it is available, it will automatically update the metrics report.

Note: starting 0.9.0, users do not need to export AWS_ACCOUNT_NUMBER and TIBANNA_AWS_REGION any
more.

deploy_core

Deploy/update only a single lambda function

tibanna deploy_core -n <lambda_name> [<options>]

where <lambda_name> would be either run_task_awsem or check_task_awsem‘.

Options

-s|--suffix=<suffixname> Using suffix helps deploying various dev-version
→˓tibanna.

The step function and lambda functions will have
→˓the suffix.

-g|--usergroup=<usergroup> Tibanna usergroup to share the permission to
→˓access

buckets and run jobs

users

To list users

tibanna users

add_user

To add users to a tibanna user group

tibanna add_user -u <user> -g <usergroup>

cleanup

To remove Tibanna components on AWS.

1.4. Tibanna 39

tibanna Documentation, Release 4.0.0

tibanna cleanup -g <usergroup> ...

Options

-s|--suffix=<suffixname> If suffix was used to deploy a tibanna, it should
→˓be added

here. The step function and lambda functions will
→˓have the

suffix at the end.

-E|--do-not-ignore-errors By default, if any of the components does not
→˓exist (e.g.

already removed), it does not throw an error and
→˓keeps on

to remove the other components. Using this option
→˓turns off

this feature and will throw an error.

-G|--do-not-remove-iam-group if set, it does not remove the IAM permissions.
→˓This option

is recommended if various suffices are used to
→˓share the

same usergroup.

-p|--purge-history if set, remove all the job logs and other job-
→˓related files

from S3 bucket and dynamoDB. Please use with
→˓caution.

-q|--quiet run quietly

setup_tibanna_env

• Advanced user only

To set up environment on AWS without deploying tibanna, use tibanna setup_tibanna_env.

tibanna setup_tibanna_env <options>

Options

-g|--usergroup-tag=<usergrouptag> an identifier for a usergroup that shares
a tibanna permission

-R|--no-randomize do not add a random number to generate a
usergroup name (e.g. the usergroup name used
will be identical to the one specified using
the ``--usergrou-tag`` option. By default,
a random number will be added at the end
(e.g. default_2721).

-b|--buckets=<bucket_list> A comma-delimited list of bucket names - the
buckets to which Tibanna needs access to
through IAM role (input, output, log).

-P|--do-not-delete-public-access-block Do not delete public access block from
→˓buckets (continues on next page)

40 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

(this way postrunjson and metrics reports
→˓will

not be public)

Non-admin user commands

The following commands can be used by a non-admin user, as long as the user belongs to the right user group.

run_workflow

To run workflow

tibanna run_workflow --input-json=<input_json_file> [<options>]

Options

-s|--sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME.

-j JOBID, --jobid JOBID specify a user-defined job id (randomly generated
→˓if

not specified)
-B, --do-not-open-browser Do not open browser
-S SLEEP, --sleep SLEEP Number of seconds between submission, to avoid
→˓drop-

out (default 3)

run_batch_workflows

To run multiple workflows in a batch. This command does not open browser and job ids are always automatically
assigned. This function is available for Tibanna versions >= 1.0.0.

tibanna run_batch_workflows -i <input_json_file> [<input_json_file2>] [...] [<options>
→˓]

Options

-s|--sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME.

-S SLEEP, --sleep SLEEP Number of seconds between submission, to avoid
→˓drop-

out (default 3)

stat

To check status of workflows,

1.4. Tibanna 41

tibanna Documentation, Release 4.0.0

tibanna stat [<options>]

Options

-t|--status=<status> filter by run status (all runs if not
→˓specified).

Status must be one of the following values:
RUNNING|SUCCEEDED|FAILED|TIMED_OUT|ABORTED

-s|--sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓ default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME. If the

→˓environmental
variable is not set, it uses name 'tibanna_pony

→˓' (4dn
default, works only for 4dn).

-n|--nlines=<number_of_lines> print out only the first n lines

-j|--job-ids <job_id> [<job_id2>] ... job ids of the specific jobs to display,
→˓separated by

space. This option cannot be combined with
--nlines(-n), --status(-t) or --sfn(-s). This

→˓option is
available only for version >= ``1.0.0``.

The output is a table (an example below)

jobid status name start_time stop_time
2xPih7reR6FM RUNNING md5 2018-08-15 17:45 2018-08-15 17:50
3hbkJB3hv92S SUCCEEDED hicprocessingbam 2018-08-15 16:04
→˓2018-08-15 16:09
UlkvH3gbBBA2 FAILED repliseq-parta 2018-08-09 18:26 2018-08-09 19:01
j7hvisheBV27 SUCCEEDED bwa-mem 2018-08-09 18:44 2018-08-09 18:59

log

To check the log or postrun json (summary) of a workflow run

tibanna log --exec-arn=<stepfunctionrun_arn>|--job-id=<jobid> [<options>]

or

tibanna log --exec-name=<exec_name> --sfn=<stepfunctionname> [<options>]

Options

-p|--postrunjson The -p option streams out a postrun json file instead of a log
→˓file.

A postrun json file is available only after the run finishes.
It contains the summary of the job including input, output, EC2

→˓config and
Cloudwatch metrics on memory/CPU/disk space.

(continues on next page)

42 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

-r|--runjson print out run json instead, which is the json file tibanna
→˓sends to the instance

before the run starts. (new in ``1.0.0``)

-t|--top prints out top file (log file containing top command
output) instead. This top file contains all the top batch

→˓command output
at a 1-minute interval. (new in ``1.0.0``)

-T|--top-latest prints out the latest content of the top file. This one
→˓contains only the latest

top command output (latest 1-minute interval). (new in ``1.0.
→˓0``)

rerun

To rerun a failed job with the same input json on a specific step function.

tibanna rerun --exec-arn=<execution_arn>|--job-id=<jobid> --sfn=<target_stepfunction_
→˓name> [<options>]

Options

-i|--instance-type=<instance_type> Override instance type for the rerun

-d|--shutdown-min=<shutdown_min> Override shutdown minutes for the rerun

-b|--ebs-size=<ebs_size> Override EBS size for the rerun

-T|--ebs-type=<ebs_size> Override EBS type for the rerun

-p|--ebs-iops=<ebs_iops> Override EBS IOPS for the rerun

-k|--key-name=<key_name> Override key name for the rerun

-n|--name=<run_name> Override run name for the rerun

-a|--appname-filter=<appname> Rerun only if the app name matches the specified
→˓app name.

rerun_many

To rerun many jobs that failed after a certain time point

tibanna rerun_many [<options>]

Options

-s|--sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable

(continues on next page)

1.4. Tibanna 43

tibanna Documentation, Release 4.0.0

(continued from previous page)

TIBANNA_DEFAULT_STEP_FUNCTION_NAME. If the
→˓environmental

variable is not set, it uses name 'tibanna_pony'
→˓(4dn

default, works only for 4dn).

-D|--stopdate=<stopdate> e.g. '14Feb2018'

-H|--stophour=<stophour> e.g. 14 (24-hour format, same as system time zone
→˓by default)

-M|--stopminute=<stopminute> e.g. 30 (default 0)

-r|--sleeptime=<sleeptime> seconds between reruns (eefault 5)

-o|--offset=<offset> offset between AWS time zone and system time zone
→˓(default 0)

e.g. if 17:00 by AWS time zone corresponds to
→˓12:00 by system

time zone, offset must be 5.

-t|--status=<status> filter by status. default 'FAILED', i.e. rerun
→˓only failed

jobs

-i|--instance-type=<instance_type> Override instance type for the rerun

-d|--shutdown-min=<shutdown_min> Override shutdown minutes for the rerun

-b|--ebs-size=<ebs_size> Override EBS size for the rerun

-T|--ebs-type=<ebs_size> Override EBS type for the rerun

-p|--ebs-iops=<ebs_iops> Override EBS IOPS for the rerun

-k|--key-name=<key_name> Override key name for the rerun

-n|--name=<run_name> Override run name for the rerun

-a|--appname-filter=<appname> Rerun only if the app name matches the specified
→˓app name.

Example

tibanna rerun_many --stopdate=14Feb2018 --stophour=15

This example will rerun all the jobs of default step function that failed after 3pm on Feb 14 2018.

kill

To kill a specific job through its execution arn or a jobid

tibanna kill --exec-arn=<execution_arn>|--job-id=<jobid>

If the execution id or job id is not found in the current RUNNING executions (e.g. the execution has already been
aborted), then only the EC2 instance will be terminated.

44 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

Example

For example, let’s say we run the following job by mistake.

$ tibanna run_workflow --input-json=fastqc.json

The following message is printed out

about to start run fastqc_85ba7f41-daf5-4f82-946f-06d31d0cd293
response from aws was:
{u'startDate': datetime.datetime(2018, 10, 11, 20, 15, 0, 71000, tzinfo=tzlocal()),
→˓'ResponseMetadata': {'RetryAttempts': 0, 'HTTPStatusCode': 200, 'RequestId':
→˓'54664dcc-cd92-11e8-a2c0-51ce6ca6c6ea', 'HTTPHeaders': {'x-amzn-requestid':
→˓'54664dcc-cd92-11e8-a2c0-51ce6ca6c6ea', 'content-length': '161', 'content-type':
→˓'application/x-amz-json-1.0'}}, u'executionArn': u'arn:aws:states:us-east-
→˓1:643366669028:execution:tibanna_unicorn_default3537:fastqc_85ba7f41-daf5-4f82-946f-
→˓06d31d0cd293'}
url to view status:
https://console.aws.amazon.com/states/home?region=us-east-1#/executions/details/
→˓arn:aws:states:us-east-1:643366669028:execution:tibanna_unicorn_default3537:fastqc_
→˓85ba7f41-daf5-4f82-946f-06d31d0cd293
JOBID jLeL6vMbhL63 submitted
EXECUTION ARN = arn:aws:states:us-east-1:643366669028:execution:tibanna_unicorn_
→˓default3537:fastqc_85ba7f41-daf5-4f82-946f-06d31d0cd293

To kill this job, use the execution arn in the above message (‘EXECUTION_ARN’) (it can also be found on the Step
Function Console)

$ tibanna kill --exec-arn=arn:aws:states:us-east-1:643366669028:execution:tibanna_
→˓unicorn_default3537:fastqc_85ba7f41-daf5-4f82-946f-06d31d0cd293

or

$ tibanna kill --job-id jLeL6vMbhL63

kill_all

To kill all currently running jobs for a given step function

tibanna kill_all

Options

-s|--sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME. If the

→˓environmental
variable is not set, it uses name 'tibanna_pony'

→˓(4dn
default, works only for 4dn).

list_sfns

To list all step functions

1.4. Tibanna 45

tibanna Documentation, Release 4.0.0

tibanna list_sfns [-n]

Options

-n show stats of the number of jobs for per status (using this option could slow
→˓down the

process)

plot_metrics

To collect, save and visualize the resources metrics from Cloud Watch

tibanna plot_metrics --job-id=<jobid> [<options>]

Options

-s|--sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME. If the

→˓environmental
variable is not set, it uses name 'tibanna_pony'

→˓(4dn
default, works only for 4dn).

-f|--force-upload This flag force the upload of the metrics reports
to the S3 bucket, even if there is a lock (upload
is blocked by default by the lock)

-u|--update-html-only This flag specify to only update the html file
for metrics visualization,
metrics reports are not updated

-B|--do-not-open-browser Do not open the browser to visualize the metrics
→˓html

after it has been created/updated

-i|--instance-id=<instance_id> Manually provide instance ID in case Tibanna
→˓somehow

can't find the information. This field is not
→˓required normally.

cost

To retrieve the cost and update the metrics report file created with plot_metrics. The cost is typically available 24
hours after the job finished. This function is available to non-admin users from version 1.0.6.

tibanna cost --job-id=<jobid> [<options>]

Options

46 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

-s|--sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME. If the

→˓environmental
variable is not set, it uses name 'tibanna_pony'

→˓(4dn
default, works only for 4dn).

-u|--update-tsv Update with the cost the tsv file that stores
→˓metrics

information on the S3 bucket

cost_estimate

To retrieve cost estimates and update the metrics report file created with plot_metrics. In contrast to the exact costs,
the estimated costs are available immediately after the job has completed. The cost estimate will also indicate if it is
an immediate estimate (i.e., the exact cost is not yet available), the actual cost or the retrospective estimate (i.e., the
exact cost is not available anymore). In case the estimate returns the actual cost and the -u parameter is set, the cost
row in the metrics file will be automatically updated. This function requires a (deployed) Tibanna version >=1.0.6.

tibanna cost_estimate --job-id=<jobid> [<options>]

Options

-u|--update-tsv Update with the cost the tsv file that stores
→˓metrics

information on the S3 bucket

-f|--force Return the estimate, even if the actual cost is
→˓available

1.4.6 Python API

All the API functions are in the API class in tibanna.core. Note that the class must be instantiated first (API().
run_workflow rather than API.run_workflow).

General Usage

from tibanna.core import API
API().method(...)

Example

from tibanna.core import API
API().run_workflow(input_json='myrun.json') # json file or dictionary object

Admin only commands

The following commands require admin previlege to one’s AWS account.

1.4. Tibanna 47

tibanna Documentation, Release 4.0.0

deploy_unicorn

To create an instance of tibanna unicorn (step function + lambdas)

API().deploy_unicorn(...)

Parameters

buckets=<bucket1,bucket2,...> List of buckets as a string to use for tibanna
→˓runs.

The associated lambda functions, EC2 instances
and user group will be given permission to these

→˓buckets.

no_setup Skip setup buckets/permissions and just redeploy
→˓tibanna

step function and lambdas.
This is useful when upgrading the existing

→˓tibanna that's
already set up.

no_setenv Do not overwrite TIBANNA_DEFAULT_STEP_FUNCTION_
→˓NAME

environmental variable in your bashrc.

suffix Using suffix helps deploying various dev-version
→˓tibanna.

The step function and lambda functions will have
→˓the suffix.

usergroup Tibanna usergroup to share the permission to
→˓access

buckets and run jobs

do_not_delete_public_access_block If set True, Tibanna does not delete public
access block from the specified buckets
(this way postrunjson and metrics reports will
not be public). Default False.

Note: starting 0.9.0, users do not need to export AWS_ACCOUNT_NUMBER and TIBANNA_AWS_REGION any
more.

deploy_core

Deploy/update only a single lambda function

API().deploy_core(name=<lambda_name>, ...)

where <lambda_name> would be either run_task_awsem or check_task_awsem‘.

Options

suffix=<suffixname> Using suffix helps deploying various dev-version
→˓tibanna.

The step function and lambda functions will have the
→˓suffix.

(continues on next page)

48 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

usergroup=<usergroup> Tibanna usergroup to share the permission to access
buckets and run jobs

users

To list users

API().users()

add_user

To add users to a tibanna user group

API().add_user(user=<user>, usegroup=<usergroup>)

cleanup

To remove Tibanna components on AWS.

API().cleanup(user_group_name=<usergroup>, ...)

Options

suffix=<suffixname> If suffix was used to deploy a tibanna, it should be
→˓added

here. The step function and lambda functions will have
→˓the

suffix at the end.

ignore_errors=<True|False> If True, if any of the components does not exist (e.g.
already removed), it does not throw an error and keeps

→˓on
to remove the other components. (default True)

do_not_remove_iam_group<True|False>
If True, does not remove the IAM permission. This

→˓option is
recommended if various suffices are used to share the

→˓same
usergroup. (default False)

purge_history=<True|False> If True, remove all the job logs and other job-related
→˓files

from S3 bucket and dynamoDB. Please use with caution.
(default False)

verbose=<True|False> Verbose if True. (default False)

1.4. Tibanna 49

tibanna Documentation, Release 4.0.0

setup_tibanna_env

• Advanced user only

To set up environment on AWS without deploying tibanna, use tibanna setup_tibanna_env.

API().setup_tibanna_env(...)

Options

usergroup_tag=<usergrouptag> an identifier for a usergroup that shares
a tibanna permission

no_randomize If set True, Tibanna does not add a random
number to generate a usergroup name (e.g. the
usergroup name used will be identical to the
one specified using the ``usergrou_tag`` option.
By default, a random number will be added at the
end (e.g. default_2721). Default False.

buckets=<bucket_list> A comma-delimited list of bucket names - the
buckets to which Tibanna needs access to
through IAM role (input, output, log).

do_not_delete_public_access_block If set True, Tibanna does not delete public
access block from the specified buckets
(this way postrunjson and metrics reports will
not be public). Default False.

Non-admin commands

The following commands can be used by a non-admin user, as long as the user belongs to the right user group.

run_workflow

To run workflow

API().run_workflow(input_json=<input_json_file|input_dict>, ...)

Options

sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME.

jobid=<JOBID> specify a user-defined job id (randomly generated if
not specified)

open_browser=<True|False> Open browser (default True)
sleep=<SLEEP> Number of seconds between submission, to avoid drop-

out (default 3)

50 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

run_batch_workflows

To run multiple workflows in a batch. This function does not open browser and job ids are always automatically
assigned. This function is available for Tibanna versions >= 1.0.0.

API().run_batch_workflows(input_json_list=<list_of_input_json_files_or_dicts>, ...)

Options

sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME.

sleep=<SLEEP> Number of seconds between submission, to avoid drop-
out (default 3)

stat

To check status of workflows,

API().stat(...)

Options

status=<status> filter by run status (all runs if not specified).
Status must be one of the following values:
RUNNING|SUCCEEDED|FAILED|TIMED_OUT|ABORTED

sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME.

n=<number_of_lines> print out only the first n lines

job_ids=<list_of_job_ids> filter by a list of job ids. This option is
available only for version >= ``1.0.0``.

The output is a table (an example below)

jobid status name start_time stop_time
2xPih7reR6FM RUNNING md5 2018-08-15 17:45 2018-08-15 17:50
3hbkJB3hv92S SUCCEEDED hicprocessingbam 2018-08-15 16:04
→˓2018-08-15 16:09
UlkvH3gbBBA2 FAILED repliseq-parta 2018-08-09 18:26 2018-08-09 19:01
j7hvisheBV27 SUCCEEDED bwa-mem 2018-08-09 18:44 2018-08-09 18:59

log

To check the log or postrun json (summary) of a workflow run

1.4. Tibanna 51

tibanna Documentation, Release 4.0.0

API().log(exec_arn=<stepfunctionrun_arn>|job_id=<jobid>, ...)

Options

postrunjson=<True|False> The postrunjson option streams out a postrun json file
→˓instead of a log file.

A postrun json file is available only after the run
→˓finishes.

It contains the summary of the job including input,
→˓output, EC2 config and

Cloudwatch metrics on memory/CPU/disk space.

runjson=<True|False> prints out run json instead, which is the json file
→˓tibanna sends to the instance

before the run starts. (new in ``1.0.0``)

top=<True|False> prints out top file (log file containing top command
→˓output) instead. This top file

contains all the top batch command output at a 1-
→˓minute interval. (new in ``1.0.0``)

top_latest=<True|False> prints out the latest content of the top file. This
→˓one contains only the latest

top command output (latest 1-minute interval). (new in
→˓``1.0.0``)

rerun

To rerun a failed job with the same input json on a specific step function.

API().rerun(exec_arn=<execution_arn>|job_id=<jobid>, sfn=<target_stepfunction_name>, .
→˓..)

Options

instance_type=<instance_type> Override instance type for the rerun

shutdown_min=<shutdown_min> Override shutdown minutes for the rerun

ebs_size=<ebs_size> Override EBS size for the rerun

ebs_type=<ebs_size> Override EBS type for the rerun

ebs_iops=<ebs_iops> Override EBS IOPS for the rerun

ebs_throughput=<ebs_throughput> Override EBS GP3 throughput for the rerun

key_name=<key_name> Override key name for the rerun

name=<run_name> Override run name for the rerun

appname_filter=<appname> Rerun only if the app name matches the specified app
→˓name.

52 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

rerun_many

To rerun many jobs that failed after a certain time point

API().rerun_many(...)

Options

sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME.

stopdate=<stopdate> e.g. '14Feb2018'

stophour=<stophour> e.g. 14 (24-hour format, same as system time zone by
→˓default)

stopminute=<stopminute> e.g. 30 (default 0)

sleeptime=<sleeptime> seconds between reruns (eefault 5)

offset=<offset> offset between AWS time zone and system time zone
→˓(default 0)

e.g. if 17:00 by AWS time zone corresponds to 12:00 by
→˓system

time zone, offset must be 5.

status=<status> filter by status. default 'FAILED', i.e. rerun only
→˓failed

jobs

instance_type=<instance_type> Override instance type for the rerun

shutdown_min=<shutdown_min> Override shutdown minutes for the rerun

ebs_size=<ebs_size> Override EBS size for the rerun

ebs_type=<ebs_size> Override EBS type for the rerun

ebs_iops=<ebs_iops> Override EBS IOPS for the rerun

ebs_throughput=<ebs_throughput> Override EBS GP3 throughput for the rerun

key_name=<key_name> Override key name for the rerun

name=<run_name> Override run name for the rerun

appname_filter=<appname> Rerun only if the app name matches the specified app
→˓name.

Example

API().rerun_many(stopdate='14Feb2018', stophour=15)

This example will rerun all the jobs of default step function that failed after 3pm on Feb 14 2018.

1.4. Tibanna 53

tibanna Documentation, Release 4.0.0

kill

To kill a specific job through its execution arn or a jobid

API().kill(exec_arn=<execution_arn>)

or

API().kill(job_id=<jobid>, sfn=<stepfunctionname>)

If jobid is specified but not stepfunctionname, then by default it assumes
TIBANNA_DEFAULT_STEP_FUNCTION_NAME. If the job id is not found in the executions on the default
or specified step function, then only the EC2 instance will be terminated and the step function status may still be
RUNNING.

Example

For example, let’s say we run the following job by mistake.

API().run_workflow(input_json='fastqc.json')

The following message is printed out

about to start run fastqc_85ba7f41-daf5-4f82-946f-06d31d0cd293
response from aws was:
{u'startDate': datetime.datetime(2018, 10, 11, 20, 15, 0, 71000, tzinfo=tzlocal()),
→˓'ResponseMetadata': {'RetryAttempts': 0, 'HTTPStatusCode': 200, 'RequestId':
→˓'54664dcc-cd92-11e8-a2c0-51ce6ca6c6ea', 'HTTPHeaders': {'x-amzn-requestid':
→˓'54664dcc-cd92-11e8-a2c0-51ce6ca6c6ea', 'content-length': '161', 'content-type':
→˓'application/x-amz-json-1.0'}}, u'executionArn': u'arn:aws:states:us-east-
→˓1:643366669028:execution:tibanna_unicorn_default3537:fastqc_85ba7f41-daf5-4f82-946f-
→˓06d31d0cd293'}
url to view status:
https://console.aws.amazon.com/states/home?region=us-east-1#/executions/details/
→˓arn:aws:states:us-east-1:643366669028:execution:tibanna_unicorn_default3537:fastqc_
→˓85ba7f41-daf5-4f82-946f-06d31d0cd293
JOBID jLeL6vMbhL63 submitted
EXECUTION ARN = arn:aws:states:us-east-1:643366669028:execution:tibanna_unicorn_
→˓default3537:fastqc_85ba7f41-daf5-4f82-946f-06d31d0cd293

To kill this job, use the execution arn in the above message (‘EXECUTION_ARN’) (it can also be found on the Step
Function Console)

API().kill(exec_arn='arn:aws:states:us-east-1:643366669028:execution:tibanna_unicorn_
→˓default3537:fastqc_85ba7f41-daf5-4f82-946f-06d31d0cd293')

or

API().kill(job_id='jLeL6vMbhL63')

kill_all

To kill all currently running jobs for a given step function

API().kill_all(...)

Options

54 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME.

list_sfns

To list all step functions

API().list_sfns(...)

Options

n show stats of the number of jobs for per status (using this option could slow
→˓down the

process)

plot_metrics

To collect, save and visualize the resources metrics from Cloud Watch

API().plot_metrics(job_id=<jobid>, ...)

Options

sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME. If the

→˓environmental
variable is not set, it uses name 'tibanna_pony'

→˓(4dn
default, works only for 4dn).

force_upload This flag force the upload of the metrics reports
to the S3 bucket, even if there is a lock (upload
is blocked by default by the lock)

update_html_only This flag specify to only update the html file for
metrics visualization,
metrics reports are not updated

open_browser This flag specify to not open the browser to
→˓visualize

the metrics html after it has been created/updated

filesystem=<filesystem> Define the filesystem of the EC2 instance, default
value is '/dev/nvme1n1'

endtime=<endtime> End time of the interval to be considered
to retrieve the data

(continues on next page)

1.4. Tibanna 55

tibanna Documentation, Release 4.0.0

(continued from previous page)

instance_id=<instance_id> Manually provide instance ID in case Tibanna
→˓somehow

can't find the information. This field is not
→˓required

normally.

cost

To retrieve the cost and update the metrics report file created with plot_metrics

API().cost(job_id=<jobid>, ...)

Options

sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME. If the

→˓environmental
variable is not set, it uses name 'tibanna_pony'

→˓(4dn
default, works only for 4dn).

update_tsv This flag specifies wether to update the cost in
→˓the tsv file that

stores metrics information on the S3 bucket

cost_estimate

Retrieve a cost estimate for a specific job. This will be available as soon as the job finished. This function will return
the exact cost, if it is available. The cost estimate will also indicate if it is an immediate estimate (i.e., the exact cost
is not yet available), the actual cost or the retrospective estimate (i.e., the exact cost is not available anymore). In case
the estimate returns the actual cost and the -u parameter is set, the cost row in the metrics file will be automatically
updated.

API().cost_estimate(job_id=<jobid>, ...)

Options

update_tsv This flag specifies wether to update the cost in
→˓the tsv file that

stores metrics information on the S3 bucket

force Return the estimate, even if the actual cost is
→˓available

1.4.7 Job Description JSON Schema

The Job Description json (input of Tibanna) defines an individual execution. It has two parts, args and config. args
contains information about pipeline, input files, output bucket, input parameters, etc. config has parameters about
AWS such as instance type, EBS size, ssh password, etc.

56 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

Example job description for CWL

{
"args": {
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/0.

→˓2.0/cwl_awsem/",
"cwl_main_filename": "pairsam-parse-sort.cwl",
"cwl_version": "v1",
"input_files": {

"bam": {
"bucket_name": "montys-data-bucket",
"object_key": "dataset1/sample1.bam"

},
"chromsize": {

"bucket_name": "montys-data-bucket",
"object_key": "references/hg38.chrom.sizes"

}
},
"input_parameters": {

"nThreads": 16
},
"input_env": {

"TEST_ENV_VAR": "abcd"
},
"output_S3_bucket": "montys-data-bucket",
"output_target": {

"out_pairsam": "output/dataset1/sample1.sam.pairs.gz"
},
"secondary_output_target": {

"out_pairsam": "output/dataset1/sample1.sam.pairs.gz.px2"
}

},
"config": {
"instance_type": "t3.micro",
"ebs_size": 10,
"EBS_optimized": true,
"log_bucket": "montys-log-bucket"

}
}

args

The args field describe pipeline, input and output.

Pipeline specification

CWL-specific

cwl_directory_url

• <url_that_contains_cwl_file(s)>

• (e.g. ‘https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/0.2.0/cwl_awsem’)

• (e.g. ‘s3://bucketname/dirname/dirname2’)

1.4. Tibanna 57

https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/0.2.0/cwl_awsem

tibanna Documentation, Release 4.0.0

• The http url must be public.

• For the s3 url, the bucket must have been included during the deploy_unicorn run (acces-
sible by tibanna)

cwl_directory_local

• <local_directory_that_contains_cwl_file(s)>

• If this is set, cwl_directory_url can be skipped.

cwl_main_filename

• <main_cwl_file> (e.g. ‘pairsam-parse-sort.cwl’)

• This file must be in the cwl url given by cwl_directory_url.

• The actual cwl link would be cwl_directory_url + ‘’ + cwl_main_file_name

cwl_child_filenames

• <list_of_cwl_files> or [] (e.g. [‘step1.cwl’, ‘step2.cwl’])

• An array of all the other cwl files that are called by the main cwl file. If the main CWL file is of
‘workflow’ type, the other CWL files corresponding to steps or subworkflows should be listed
here.

cwl_version

• either v1 or draft-3 (starting with tibanna version 1.0.0, draft-3 is no longer sup-
ported.)

singularity

• This option uses Singularity to run Docker images internally (slower). This option does NOT
support native Singularity images, since CWL does not support native Singularity images.

• either true or false

• This is an optional field. (default false)

WDL-specific

language

• This field must be set to wdl to run a WDL pipeline.

• To run an old version (draft2) of WDL, set it to wdl_draft2. This will direct Tibanna to
specifically use an older version of Cromwell. Some draft2 WDLs may be supported by the
later version of Cromwell. Use the wdl_draft2 option only if the old WDL does not work
with the later version of Cromwell.

wdl_directory_url

• <url_that_contains_wdl_file(s)>

• (e.g. ‘https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/master/wdl’)

• (e.g. ‘s3://bucketname/dirname/dirname2’)

• The http url must be public.

• For the s3 url, the bucket must have been included during the deploy_unicorn run (acces-
sible by tibanna)

wdl_directory_local

58 Chapter 1. What do I need to run pipelines using Tibanna?

https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/master/wdl

tibanna Documentation, Release 4.0.0

• <local_directory_that_contains_wdl_file(s)>

• If this is set, wdl_directory_url can be skipped.

wdl_main_filename

• <main_wdl_file> (e.g. ‘pairsam-parse-sort.wdl’)

• This file must be in the wdl url given by wdl_directory_url.

• The actual wdl link would be wdl_directory_url + ‘’ + wdl_file_name

wdl_child_filenames

• <list_of_wdl_files> or [] (e.g. [‘subworkflow1.wdl’, ‘subworkflow2.wdl’])

• An array of all the other wdl files that are called by the main wdl file. This could happen if there
are the main WDL file is using another WDL file as a subworkflow.

Shell command-specific

language

• This field must be set to shell to run a shell command without CWL/WDL.

container_image

• <Docker image name>

command

• <shell command to be executed inside the Docker container>

• a pair of nested double quotes are allowed

• (e.g.

"command": "echo \"haha\" > outfile"

Snakemake-specific

language

• This field must be set to snakemake to run a Snakemake pipeline.

container_image

• This is a required field.

• It is highly recommended to use the official Snakemake Docker image (snakemake/
snakemake)

command

• This is a required field.

• Most likely it will be snakemake but it can be run with other snakemake otions.

• (e.g.

"command": "snakemake <target> --use-conda"

• a pair of nested double quotes are allowed

1.4. Tibanna 59

tibanna Documentation, Release 4.0.0

• (e.g.

"command": "snakemake <target> --config=region=\"22:30000000-40000000\"

snakemake_main_filename

• This is a required field.

• Most likely it will be Snakefile (do not include directory name).

snakemake_child_filenames

• This is an optional field.

• This may include other workflow-related files including env.yml, config.json, etc. (Do
not include directory name).

snakemake_directory_local

• The location (directory path) of the snakemake_main_filename and
snake_child_filenames.

• Use this if the workflow files are local.

snakemake_directory_url

• The url (directory only) of the snakemake_main_filename and snake_child_filenames.

• Use this if the worlfow files are accessible through a url (either http:// or s3://.

Other pipeline-related fields

app_name

• <name of the app> (e.g. ‘pairsam-parse-sort’)

• A alphanumeric string that can identify the pipeline/app. May contain ‘-’ or ‘_’.

• This field is optional and is used only by Benchmark which auto-termines instance type and
EBS size based on input size and parameters. If the workflow doesn’t have an associated Bench-
mark function, this field can be omitted, but instance_type (or mem and cpu), ebs_size
(unless using default 10GB), EBS_optimized (unless using default False) must be speci-
fied in config.

app_version

• optional

• <version of the app> (e.g. 0.2.0)

• Version of the pipeline/app, for the user to keep in track.

language

• ‘cwl_v1’, ‘cwl_draft3’ (tibanna < 1.0.0 only) or ‘wdl’ (=’wdl_v1’ for backward compatibil-
ity) or ‘wdl_draft2’ or ‘wdl_v1’ (tibanna >= 1.0.0)

• For WDL, it is a required field. For CWL, the language field can be omitted.

run_args

• Optional, available for tibanna > 1.9.1

• Additional command line arguments that are passed to the cwltool/cromwell.jar
run/caper run commands.

60 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

Input data specification

input_files

• A dictionary that contains input files. The keys must match the input argument names of the
CWL/WDL.

• It contains bucket_name, object_key as required fields.

• Optionally, it may contain the following fields:

– profile if the bucket can only be accessed through profile (profile can be set during
Tibanna deployment)

– rename if the file name must be changed upon download to the EC2 instance. This could
be useful if your files are organized in certain names on S3 but the pipeline requires it to
have a different name.

– unzip to unzip the file during the upload to the EBS volume. Supported compression
types are “gz” and “bz2”.

– mount to mount the input instead of downloading. This saves downloading time but may
slow down the file reading slightly. The mounting is done at the bucket level to the EBS.
We have tested up to 50 instances concurrently mounting the same bucket with no problem
- if you’re running 10,000 jobs, we cannot guarantee if this would still work. mount
and rename cannot be used together. If another input file is specified without mount but
from the same bucket, this other input file will be downloaded to the running instance even
though the bucket is mounted.

• object_key and rename can be a singleton, an array, an array of arrays or an array of arrays
of arrays.

• (e.g.

{
"bam": {

"bucket_name": "montys-data-bucket",
"object_key": "dataset1/sample1.bam",
"mount": true

},
"chromsize": {

"bucket_name": "montys-data-bucket",
"object_key": "references/JKGFALIFVG.chrom.sizes"
'rename': 'some_dir_on_ec2/hg38.chrom.sizes'

}
}

)

• key can be a target file path (to be used inside container run environment) starting with file:/
/ instead of CWL/WDL argument name.

– Input data can only be downloaded to /data1/input or /data1/
<language_name> where <language_name is cwl|wdl|shell|snakemake.
The latter /data1/<language_name> is the working directory for snakemake and
shell.

– It is highly recommended to stick to using only argument names for CWL/WDL for pipeline
reproducibility, since they are already clearly defined in CWL/WDL (especially for CWL).

– (e.g.

1.4. Tibanna 61

tibanna Documentation, Release 4.0.0

{
"file:///data1/shell/mysample1.bam": {

"bucket_name": "montys-data-bucket",
"object_key": "dataset1/sample1.bam"

}
}

secondary_files

• A dictionary of the same format as input_file but contains secondary files.

• The keys must match the input argument name of the CWL/WDL where the secondary file
belongs.

• (e.g.

{
"bam": {

"bucket_name": "montys-data-bucket",
"object_key": "dataset1/sample1.bam.bai"

}
}

)

input_parameters

• A dictionary that contains input parameter values. Default parameters don’t need to be included.
The keys must match the input argument name of the CWL/WDL.

• (e.g.

{
'nThreads': 16

}

)

input_env

• A dictionary that specifies environment variables to be passed.

• Do not use this feature to pass in AWS_ACCESS_KEY and/or AWS_SECRET_KEY or
AWS_REGION - it will interfere with the bucket permission of the instance.

• (e.g.

{
"TEST_ENV_VAR": "abcd"

}

)

Output target specification

output_S3_bucket

• The name of the bucket where output files will be sent to.

output_target

62 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

• A dictionary that contains a desired object keys to be put inside output bucket. This can be
useful if, for example, the pipeline always generates an output file of the same name (e.g.
report, output.txt, etc) but the user wants to distinguish them by sample names in the output
bucket. If not set, the original output file names will be used as object key.

• (e.g.

{
"out_pairsam": "output/dataset1/sample1.sam.pairs.gz"

}

)

• key can be a source file path (to be used inside container run environment) starting with file:/
/ instead of CWL/WDL argument name.

• (e.g.

{
"file:///data1/out/some_random_output.txt": "output/some_random_output.

→˓txt"
}

• It is highly recommended to stick to using only argument names for CWL/WDL for pipeline
reproducibility, since they are already clearly defined in CWL/WDL (especially for CWL).

• Starting with version 1.0.0, a dictionary format is also accepted for individual target, with
keys object_key bucket_name, object_prefix and/or unzip. For a regular file
output, object_key and bucket_name can be used. The use of bucket_name here al-
lows using a different output bucket for specific output files. For a directory, object_prefix
can be used instead which will be used as if it is the directory name on S3. object_prefix
may or may not have the trailing /. unzip is boolean (either true or false) and can be
applied to a case when the output file is a zip file and you want the content to be extracted into
a directory on an S3 bucket.

• (e.g.

{
"out_pairsam": {

"object_key": "output/renamed_pairsam_file"
}

}

{
"out_pairsam": {

"object_key": "output/renamed_pairsam_file",
"bucket_name" : "some_different_bucket"

}
}

{
"some_output_as_dir": {

"object_prefix": "some_dir_output/",
"bucket_name": "some_different_bucket"

}
}

1.4. Tibanna 63

tibanna Documentation, Release 4.0.0

{
"out_zip": {

"object_prefix": "zip_output/",
"unzip": true

}

• One or multiple tags can be automatically added to each ouput file by specifying the tag key.
In the following example, two (object-level) tags are added to the result file. Note that the tag-
set must be encoded as URL Query parameters. In case the unzip key is specified in addition
to the tag key, each file in the output directory will be tagged.

{
"out_zip": {

"object_key": "result.txt",
"tag": "Key1=Value1&Key2=Value2"

}

secondary_output_target

• Similar to output_target but for secondary files.

• (e.g.

{
"out_pairsam": "output/dataset1/sample1.sam.pairs.gz.px2"

}

)

alt_cond_output_argnames

• In case output argnames are conditional (see an example in simple_example_cond_merge),
specify a global output name that can point to one of the conditional outputs.

• This applies only to WDL since CWL does not support conditional statements.

• (e.g.

'alt_cond_output_argnames' : {
'merged' : ['cond_merged.paste.pasted', 'cond_merged.cat.concatenated']

},
'output_target': {

'merged' : 'somedir_on_s3/somefilename'
}

Dependency specification

dependency

• List of other jobs that should finish before the job starts

• Currently, only execution arns are accepted. An execution arn of a given run is printed out after
running the tibanna run_workflow command. It can also be retrieved from the response
of the run_workflow function (response['_tibanna']['exec_arn']).

64 Chapter 1. What do I need to run pipelines using Tibanna?

https://tibanna.readthedocs.io/en/latest/simple_example_merge.html

tibanna Documentation, Release 4.0.0

{
"exec_arn": ["arn:aws:states:us-east-

→˓1:643366669028:execution:tibanna_unicorn_default_7927:md5_test"]
}

Custom error handling

custom_errors

• List of dictionaries describing custom error types

• This field allows users to define workflow-specific errors based on a string pattern in log.
Tibanna CheckTask step will parse the logs and detect this error.

• This does not serve as error detection - it serves as error identification once the run has failed.

• If the matching error happens, you’ll see the error type and the corresponding line(s) of the
error in the log file printed as the Exception in Step function.

• error_type is a short tag that defines the name of the error.

• pattern is the regex pattern to be detected in the log.

• multiline (optional) should be set True if pattern is multi-line (e.g. contains \n).

[
{

"error_type": "Unmatching pairs in fastq"
"pattern": "paired reads have different names: .+",
"multiline": False

}
]

config

The config field describes execution configuration.

log_bucket

• <log_bucket_name>

• This is where the logs of the Tibanna runs are sent to.

• required

instance_type

• <instance_type>

• This or mem and cpu are required if Benchmark is not available for a given workflow.

• instance_type can be a string (e.g., t3.micro) or a list (e.g., [t3.micro, t3.
small]). If spot_instance is enabled, Tibanna will run the workflow on the instance
with the highest available capacity. If spot_instance is disabled, it will run the workflow
on the cheapest instance in the list.

• If both instance_type and mem & cpu are specified, Tibanna internally creates a list of
instances that are directly specified in instance_type and instances that satisfy the mem &
cpu requirement. One instance is chosen according to the rules above to run the workflow.

1.4. Tibanna 65

tibanna Documentation, Release 4.0.0

mem

• <memory_in_gb>

• required is Benchmark is not available for a given workflow and if instance_type is not
specified.

• mem specifies memory requirement - instance_type is auto-determined based on mem and cpu.

• Starting version 1.2.0, 1GB is added to mem when choosing an instance type by default. To
turn off This automatic increase in memory, set mem_as_is to be true.

mem_as_is

• <true|false>

• If true, the value set in mem is used as it is when choosing an instance type. If false, 1GB is
added by default, to accommodate the memory consumption of the house-keeping processes.

• This field is available for >=1.2.0

cpu

• <number_of_cores>

• required is Benchmark is not available for a given workflow and if instance_type is not
specified.

• cpu specifies number of cores required to run a given workflow - instance_type is auto-
determined based on mem and cpu.

ebs_size

• <ebs_size_in_gb>

• The EBS volume size used for data (input, output, or any intermediary files). This volume is
mounted as /data1 on the EC2 instance and as /data1 inside Docker image when running
in the shell or snakemake mode.

• 10 is minimum acceptable value.

• set as 10 if not specified and if Benchmark is not available for a given workflow.

• It can be provided in the format of <s>x (e.g. 3x, 5.5x) to request <s> times total input size.
(or 10 is smaller than 10)

• Starting version 1.2.0, 5GB is added to ebs_size by default. To turn off This automatic increase
in EBS size, set ebs_size_as_is to be true.

ebs_size_as_is

• <true|false>

• If true, the value set in ebs_size is used as it is. If false, 5GB is added by default, to
accommodate the disk usage of house-keeping processes and docker image/containers.

• This field is available for >=1.2.0

EBS_optimized

• <ebs_optimized> true, false or ‘’ (blank)

• required if Benchmark is not available for a given workflow.

• Whether the specific instance type should be EBS_optimized. It can be True only for an instance
type that can be EBS optimized. If instance type is unspecified, leave this as blank.

root_ebs_size

66 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

• <root_ebs_size_in_gb>

• default 8

• For versions < 1.0.0, Tibanna uses two separate EBS volumes, one for docker image, another
for data. Most of the times, the 8GB root EBS that is used for docker images has enough
space. However, if the docker image is larger than 5GB or if multiple large docker images are
used together, one may consider increasing root ebs size. Any directory that is used inside a
docker image (e.g. /tmp when running in the shell mode) that is not mounted from the
data EBS could also cause a no space left in device error on the root EBS volume.
It is recommended to use a directory under /data1 as a temp directory when running in the
shell mode, which is mounted from data EBS.

• This field is supported in version 0.9.0 or higher. If an older version has been used, redeploy
run_task_awsem to enable this feature, after installing 0.9.0 or higher, as below.

tibanna deploy_core -n run_task_awsem -g <usergroup> [-s <suffix>]

• For versions >= 1.0.0, this field is no longer needed (though still supported) since the docker
image also uses the data EBS and not the root EBS starting 1.0.0. This means for a large
docker image, it is recommended to increase ebs_size rather than root_ebs_size. It
takes effect only if run_task_awsem is redeployed as above. For consistency, when you
redeploy run_task_awsem from version < 1.0.0 to version >= 1.0.0, it is also recom-
mended to redeploy check_task_awsem with the same version.

shutdown_min

• either number of minutes or string ‘now’

• ‘now’ would make the EC2 instance to terminate immediately after a workflow run. This option
saves cost if the pipeline is stable. If debugging may be needed, one could set shutdown_min to
be for example, 30, in which case the instance will keep running for 30 minutes after completion
of the workflow run. During this time, a user could ssh into the instance.

• optional (default : “now”)

password

• <password_for_ssh> or ‘’ (blank)

• One can use either password or key_name (below) as ssh mechanism, if the user wants an option
to ssh into the instance manually for monitoring/debugging purpose. Tibanna itself does not use
ssh.

• The password can be any string and anyone with the password and the ip address of the EC2
instance can ssh into the machine.

• optional (default : no password-based ssh)

key_name

• <key_pair_name> or ‘’ (blank)

• One can use either password (above) or key_name as ssh mechanism, if the user wants an option
to ssh into the instance manually for monitoring/debugging purpose. Tibanna itself does not use
ssh.

• The key pair should be an existing key pair and anyone with the key pair .pem file and the ip
address of the EC2 instance can ssh into the machine.

• optional (default : no key-based ssh)

ebs_iops

1.4. Tibanna 67

tibanna Documentation, Release 4.0.0

• IOPS of the io1, io2 or gp3 type EBS

• optional (default: unset)

ebs_throughput

• Provisioned throughput of the gp3 type EBS (MiB/s). Must be an integer between 125 and
1000.

• optional (default: unset)

ebs_type

• type of EBS (e.g. gp3, gp2, io1, io2)

• optional (default: gp3 (version >= 1.0.0) or gp2 (version < 1.0.0))

cloudwatch_dashboard

• This option is now depricated.

• if true, Memory Used, Disk Used, CPU Utilization Cloudwatch metrics are collected into a
single Cloudwatch Dashboard page. (default false)

• Warning: very expensive - Do not use it unless absolutely neessary. Cloudwatch metrics are
collected for every awsem EC2 instances even if this option is turned off. The Dashboard option
makes it easier to look at them together.

• There is a limit of 1,000 CloudWatch Dashboards per account, so do not turn on this option for
more than 1,000 runs.

spot_instance

• if true, request spot instance instead of an On-Demand instance

• optional (default false)

spot_duration

• Max duration of spot instance in min (no default). If set, request a fixed-duration spot instance
instead of a regular spot instance. spot_instance must be set true.

• optional (no default)

behavior_on_capacity_limit

• behavior when a requested instance type (or spot instance) is not available due to instance limit
or unavailability.

• available options :

– fail (default)

– wait_and_retry (wait and retry with the same instance type again.),

– retry_without_spot (try with the same instance type but not a spot instance) : this
option is applicable only when spot_instance is set to `True

availability_zone

• specify availability zone (by default, availability zone is randomly selected within region by
AWS)

• e.g. us-east-1a

• optional (no default)

security_group

68 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

• specify security group. This feature may be useful to launch an instance to a specific VPC.

• e.g. sg-00151073fdf57305f

• optional (no default)

• This feature is supported in version 0.15.6 or higher. If an older version has been used, redeploy
run_task_awsem to enable this feature, after installing 0.15.6 or higher, as below.

tibanna deploy_core -n run_task_awsem -g <usergroup> [-s <suffix>]

subnet

• specify subnet ID. This feature may be useful to launch an instance to a specific VPC. If you
don’t have default VPC, subnet must be specified.

• e.g. subnet-efb1b3c4

• optional (no default)

• This feature is supported in version 0.15.6 or higher. If an older version has been used, redeploy
run_task_awsem to enable this feature, after installing 0.15.6 or higher, as below.

tibanna deploy_core -n run_task_awsem -g <usergroup> [-s <suffix>]

1.4.8 Monitoring a workflow run

Monitoring can be done either from the Step Function Console through a Web Browser, or through command-line.

Command-line

General stats

tibanna stat [--sfn=<stepfunctioname>] [--status=RUNNING|SUCCEEDED|FAILED|TIMED_
→˓OUT|ABORTED] [-l] [-n <number_of_lines>] [-j <job_id> [<job_id2>] [...]]

The output is a table (an example below)

jobid status name start_time stop_time
2xPih7reR6FM RUNNING md5 2018-08-15 17:45 2018-08-15 17:50
3hbkJB3hv92S SUCCEEDED hicprocessingbam 2018-08-15 16:04 2018-
→˓08-15 16:09
UlkvH3gbBBA2 FAILED repliseq-parta 2018-08-09 18:26 2018-08-09
→˓19:01
j7hvisheBV27 SUCCEEDED bwa-mem 2018-08-09 18:44 2018-08-09
→˓18:59

To print out more information, use the -l (long) option. The additional information includes the ID, type, status and
public ip of the EC2 instance. Keyname and Password information is shown for ssh.

jobid status name start_time stop_time instance_id instance_
→˓type instance_status ip key password
O37462jD9Kf7 RUNNING bwa-mem 2018-12-14 23:37 2018-12-14 23:40 i-
→˓009880382ee22a5b1 t2.large running 3.25.66.32 4dn-encode
→˓somepassword

(continues on next page)

1.4. Tibanna 69

tibanna Documentation, Release 4.0.0

(continued from previous page)

jN4ubJNlNKIi ABORTED bwa-mem 2018-12-14 23:33 2018-12-14 23:36 i-
→˓0df66d22d485bbc05 c4.4xlarge shutting-down - - -
dWBRxy0R8LXi SUCCEEDED bwa-mem 2018-12-14 22:44 2018-12-14 22:59
→˓ i-00f222fe5e4580007 t3.medium terminated - - -

Using -n limits the number of lines to be printed. (the most recent n items will be printed)

Execution logs

Log

Using your job ID, you can also check your S3 bucket to see if you can find a file named <jobid>.log. This will happen
5~10min after you start the process, because it takes time for an instance to be ready and send the log file to S3. The
log file gets updated, so you can re-download this file and check the progress. Checking the log file can be done
through the tibanna log command. For example, to view the last 60 lines of the log for job lSbkdVIQ6VtX,

tibanna log --job-id=lSbkdVIQ6VtX | tail -60

The output looks as below for version 1.0.0 or higher (much better organized / formatted than older version logs).

job id: tvfZLFlt3PBz
instance type: t3.micro
instance id: i-0be6e6be5723ecd24
instance region: us-east-1
tibanna lambda version: 1.0.0
awsf image: duplexa/tibanna-awsf:1.0.0
ami id: ami-0a7ddfc7e412ab6e0
availability zone: us-east-1f
security groups: default
log bucket: my-tibanna-test-bucket
shutdown min: 30

Starting...
Tue Nov 3 20:47:19 UTC 2020

...

Running CWL/WDL/Snakemake/Shell commands

workflow language: wdl
Operating System: Ubuntu 20.04.1 LTS (containerized)
Docker Root Dir: /mnt/data1/docker
CPUs: 16
Total Memory: 40.18GiB

...

INFO /usr/local/bin/cwltool 3.0.20201017180608
INFO Resolved 'workflow_gatk-GenotypeGVCFs_plus_vcf-integrity-check.cwl' to 'file:///
→˓mnt/data1/cwl/workflow_gatk-GenotypeGVCFs_plus_vcf-integrity-check.cwl'
INFO [workflow] start
INFO [workflow] starting step gatk-GenotypeGVCFs

(continues on next page)

70 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

INFO [step gatk-GenotypeGVCFs] start

...

22:12:34.599 WARN InbreedingCoeff - Annotation will not be calculated, must provide
→˓at least 10 samples
22:12:34.599 WARN InbreedingCoeff - Annotation will not be calculated, must provide
→˓at least 10 samples
22:12:34.600 WARN InbreedingCoeff - Annotation will not be calculated, must provide
→˓at least 10 samples
22:12:34.601 WARN InbreedingCoeff - Annotation will not be calculated, must provide
→˓at least 10 samples
22:12:35.852 INFO ProgressMeter - chr14:106769920 50.4
→˓79043000 1567469.6
22:12:36.890 INFO ProgressMeter - chr14:106882957 50.4
→˓79071726 1567501.5
22:12:36.890 INFO ProgressMeter - Traversal complete. Processed 79071726 total
→˓variants in 50.4 minutes.
22:12:36.999 INFO GenotypeGVCFs - Shutting down engine
[November 3, 2020 10:12:37 PM UTC] org.broadinstitute.hellbender.tools.walkers.
→˓GenotypeGVCFs done. Elapsed time: 50.48 minutes.
Runtime.totalMemory()=1915224064
Using GATK jar /miniconda3/share/gatk4-4.1.2.0-1/gatk-package-4.1.2.0-local.jar

To Download the log file manually, the following command also works.

aws s3 cp s3://<tibanna_lob_bucket_name>/<jobid>.log .

Top and Top_latest

As of version 1.0.0, the top command output is sent to <jobid>.top and <jobid>.top_latest in the log
bucket. The top command output used to be mixed in the log file (<jobid>.log) in previous versions. With
tibanna log command and option -t (all top output) and -T (latest only), one can print out the top command
output from the running instance. The data is collected at 1-minute intervals and only while the command is running
(e.g. not while the input data are downloaded to the EC2 instance or ssh is being configured etc).

To use this feature, the tibanna unicorn must be deployed with tibanna >= 1.0.0 and the locally installed version
must be >= 1.0.0 as well.

Below is an example command and the output, executed twice with a 1-minute interval. In this example, the user
can see that around 20:49:01, unpigz was running and around 20:50:01, many java processes were running (they
depend on the command / workflow).

tibanna log -j OiHYCN1QoEiP -T

Timestamp: 2021-01-20-20:49:01
top - 20:49:01 up 1 min, 0 users, load average: 2.11, 0.75, 0.27
Tasks: 15 total, 2 running, 13 sleeping, 0 stopped, 0 zombie
%Cpu(s): 13.1 us, 6.4 sy, 0.0 ni, 80.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 41139.5 total, 32216.5 free, 675.9 used, 8247.1 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 39951.0 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

(continues on next page)

1.4. Tibanna 71

tibanna Documentation, Release 4.0.0

(continued from previous page)

54 root 20 0 2928856 102488 48260 S 186.7 0.2 0:44.95 dockerd
858 root 20 0 28904 1228 1128 R 153.3 0.0 0:09.18 unpigz
859 root 20 0 1673140 80084 44464 S 46.7 0.2 0:02.91 exe

1 root 20 0 7104 3692 3348 S 0.0 0.0 0:00.02 run.sh
94 root 20 0 1781488 45328 25740 S 0.0 0.1 0:00.12 contain+

319 root 20 0 1792992 14660 9056 S 0.0 0.0 0:00.10 goofys-+
325 root 20 0 1571284 14136 9080 S 0.0 0.0 0:00.08 goofys-+
382 root 20 0 6812 2076 1868 S 0.0 0.0 0:00.00 cron

If we run the command again in ~1 min, we may get a different snapshot. This way, we can monitor in near-real time
what kind of programs are running and how much resources they are using.

tibanna log -j OiHYCN1QoEiP -T

Timestamp: 2021-01-20-20:50:01
top - 20:50:01 up 2 min, 0 users, load average: 18.06, 4.84, 1.67
Tasks: 45 total, 1 running, 44 sleeping, 0 stopped, 0 zombie
%Cpu(s): 93.6 us, 6.4 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 41139.5 total, 16099.9 free, 16978.6 used, 8061.1 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 23657.1 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2085 root 20 0 7984200 1.1g 31356 S 253.3 2.8 0:28.85 java
2114 root 20 0 7984200 1.2g 31512 S 206.7 2.9 0:25.40 java
2095 root 20 0 7984200 1.2g 31328 S 186.7 3.0 0:24.46 java
2208 root 20 0 7984200 1.1g 31356 S 133.3 2.8 0:27.61 java
2121 root 20 0 7984200 1.2g 31480 S 120.0 2.9 0:26.81 java
2189 root 20 0 7984200 1.2g 31372 S 120.0 3.0 0:30.18 java
2122 root 20 0 7984200 1.1g 31232 S 100.0 2.8 0:28.88 java
2148 root 20 0 7984200 1.0g 31284 S 100.0 2.5 0:29.71 java

Postrun.json

Once the job is finished, you should be able to find the <jobid>.postrun.json file as well. This file can be
viewed likewise using the tibanna log command, but with the -p option. The postrun json file contains the
summary of the run, including the input / output / EC2 configuration and Cloudwatch metrics for memory/CPU/disk
space usage.

Starting version 1.0.0, you can get an incomplete postrun.json before the job is finished, in addition to a complete
postrun.json that you get at the end of the run. The incomplete postrun.json will not have the metrics, job status, end
time, etc, but will include instance ID and file system.

tibanna log -p --job-id=lSbkdVIQ6VtX

{
"Job": {

"status": "0",
"Metrics": {

"max_cpu_utilization_percent": 86.4,
"max_mem_used_MB": 14056.421875,
"max_mem_utilization_percent": 45.124831006539534,
"max_disk_space_utilization_percent": 72.0912267060547,
"total_mem_MB": 31150.08203125,
"max_mem_available_MB": 17093.66015625,

(continues on next page)

72 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

"max_disk_space_used_GB": 64.4835815429688
},
"total_tmp_size": "4.0K",
"Log": {

"log_bucket_directory": "tibanna-output"
},
"App": {

"main_wdl": "atac.wdl",
"other_cwl_files": "",
"App_name": "encode-atacseq-postaln",
"language": "wdl",
"other_wdl_files": "",
"main_cwl": "",
"cwl_url": "",
"wdl_url": "https://raw.githubusercontent.com/4dn-dcic/atac-seq-pipeline/

→˓master/",
"App_version": "1.1.1"

},
"filesystem": "/dev/nvme1n1",
"JOBID": "lSbkdVIQ6VtX",
"instance_id": "i-06fc45b29b47a1703",
"end_time": "20190204-17:11:01-UTC",
"total_input_size": "829M",
"Input": {

"Input_files_data": {
"atac.chrsz": {

"profile": "",
"path": "9866d158-da3c-4d9b-96a9-1d59632eabeb/4DNFIZJB62D1.chrom.

→˓sizes",
"rename": "",
"class": "File",
"dir": "elasticbeanstalk-fourfront-webprod-files"

},
"atac.blacklist": {

"profile": "",
"path": "9562ffbd-9f7a-4bd7-9c10-c335137d8966/4DNFIZ1TGJZR.bed.gz

→˓",
"rename": "",
"class": "File",
"dir": "elasticbeanstalk-fourfront-webprod-files"

},
"atac.tas": {

"profile": "",
"path": [

"b08d0ea3-2d95-4306-813a-f2e956a705a9/4DNFIZYWOA3Y.bed.gz",
"0565b17b-4012-4d4d-9914-a4a993717db8/4DNFIZDSO341.bed.gz"

],
"rename": [

"4DNFIZYWOA3Y.tagAlign.gz",
"4DNFIZDSO341.tagAlign.gz"

],
"class": "File",
"dir": "elasticbeanstalk-fourfront-webprod-wfoutput"

}
},
"Secondary_files_data": {

"atac.tas": {
(continues on next page)

1.4. Tibanna 73

tibanna Documentation, Release 4.0.0

(continued from previous page)

"profile": "",
"path": [

null,
null

],
"rename": [

"4DNFIZYWOA3Y.tagAlign.gz",
"4DNFIZDSO341.tagAlign.gz"

],
"class": "File",
"dir": "elasticbeanstalk-fourfront-webprod-wfoutput"

}
},
"Env": {},
"Input_parameters": {

"atac.pipeline_type": "atac",
"atac.paired_end": true,
"atac.enable_xcor": false,
"atac.disable_ataqc": true,
"atac.gensz": "hs"

}
},
"Output": {

"output_target": {
"atac.conservative_peak": "b8a245d2-89c3-44d3-886c-4cd895f9d535/

→˓4DNFICOQGQSK.bb",
"atac.qc_json": "2296ea28-d09a-41ba-afb9-1cbfafb1898b/atac.qc_

→˓json16152683435",
"atac.report": "2296ea28-d09a-41ba-afb9-1cbfafb1898b/atac.

→˓report34127308390",
"atac.optimal_peak": "65023676-be5c-4497-927c-a796a4c302fe/

→˓4DNFIY43X8IO.bb",
"atac.sig_fc": "166659d9-2d6f-440f-b404-b7fe0109e8c5/4DNFI5BWWMR7.bw"

},
"secondary_output_target": {},
"output_bucket_directory": "elasticbeanstalk-fourfront-webprod-wfoutput",
"Output files": {

"atac.conservative_peak": {
"path": "/data1/wdl/cromwell-executions/atac/14efe06b-a010-42c9-

→˓be0f-82f33f4d877c/call-reproducibility_overlap/execution/glob-
→˓c12e49ae1deb87ae04019b575ae1ffe9/conservative_peak.narrowPeak.bb",

"target": "b8a245d2-89c3-44d3-886c-4cd895f9d535/4DNFICOQGQSK.bb"
},
"atac.qc_json": {

"path": "/data1/wdl/cromwell-executions/atac/14efe06b-a010-42c9-
→˓be0f-82f33f4d877c/call-qc_report/execution/glob-3440f922973abb7a616aaf203e0db08b/qc.
→˓json",

"target": "2296ea28-d09a-41ba-afb9-1cbfafb1898b/atac.qc_
→˓json16152683435"

},
"atac.report": {

"path": "/data1/wdl/cromwell-executions/atac/14efe06b-a010-42c9-
→˓be0f-82f33f4d877c/call-qc_report/execution/glob-eae855c82d0f7e2185388856e7b2cc7b/qc.
→˓html",

"target": "2296ea28-d09a-41ba-afb9-1cbfafb1898b/atac.
→˓report34127308390"

},
(continues on next page)

74 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

"atac.optimal_peak": {
"path": "/data1/wdl/cromwell-executions/atac/14efe06b-a010-42c9-

→˓be0f-82f33f4d877c/call-reproducibility_overlap/execution/glob-
→˓6150deffcc38df7a1bcd007f08a547cd/optimal_peak.narrowPeak.bb",

"target": "65023676-be5c-4497-927c-a796a4c302fe/4DNFIY43X8IO.bb"
},
"atac.sig_fc": {

"path": "/data1/wdl/cromwell-executions/atac/14efe06b-a010-42c9-
→˓be0f-82f33f4d877c/call-macs2_pooled/execution/glob-8876d8ced974dc46a0c7a4fac20a3a95/
→˓4DNFIZYWOA3Y.pooled.fc.signal.bigwig",

"target": "166659d9-2d6f-440f-b404-b7fe0109e8c5/4DNFI5BWWMR7.bw"
}

},
"alt_cond_output_argnames": []

},
"total_output_size": "232K",
"start_time": "20190204-15:28:30-UTC"

},
"config": {

"ebs_size": 91,
"cloudwatch_dashboard": true,
"ami_id": "ami-0f06a8358d41c4b9c",
"language": "wdl",
"json_bucket": "4dn-aws-pipeline-run-json",
"json_dir": "/tmp/json",
"EBS_optimized": true,
"ebs_iops": "",
"userdata_dir": "/tmp/userdata",
"shutdown_min": "now",
"instance_type": "c5.4xlarge",
"public_postrun_json": true,
"ebs_type": "gp2",
"script_url": "https://raw.githubusercontent.com/4dn-dcic/tibanna/master/awsf/

→˓",
"job_tag": "encode-atacseq-postaln",
"log_bucket": "tibanna-output"

},
"commands": []

}

To Download the postrun json file manually, the following command also works.

aws s3 cp s3://<tibanna_lob_bucket_name>/<jobid>.postrun.json .

EC2 Spot failure detection

From Tibanna version 1.6.0, a cron job on the EC2 will regularly check for Spot Instance interruption notices issued
by AWS (in case the workflow on a Spot instance). In such an event, the EC2 spot instance is going to be terminated by
AWS and the workflow run will most likely fail. In this case Tibanna creates a file called <jobid>.spot_failure
in the log bucket.

1.4. Tibanna 75

tibanna Documentation, Release 4.0.0

DEBUG tar ball

For WDL, a more comprehensive log is provided as <jobid>.debug.tar.gz in the same log bucket, starting
from version 0.5.3. This file is a tar ball created by the following command on the EC2 instance:

cd /data1/wdl/
find . -type f -name 'stdout' -or -name 'stderr' -or -name 'script' -or \
-name '*.qc' -or -name '*.txt' -or -name '*.log' -or -name '*.png' -or -name '*.pdf' \
| xargs tar -zcvf debug.tar.gz

You can download this file using a aws s3 cp command.

aws s3 cp s3://<tibanna_lob_bucket_name>/<jobid>.debug.tar.gz .

Detailed monitoring through ssh

You can also ssh into your running instance to check more details. The IP of the instance can be found using tibanna
stat -v

ssh ubuntu@<ip>

if keyname was provided in the input execution json,

ssh -i <keyfilename>.pem ubuntu@<ip>

The keyname (and/or password) can also be found using tibanna stat -v.

Alternatively, the Step Function execution page of AWS Web Console contains details of the ssh options. keyname
and password can be found inside the input json of the execution. The IP can be found inside the output json of the
RunTaskAwsem step or the input json of the CheckTaskAwsem step.

The purpose of the ssh is to monitor things, so refrain from doing various things there, which could interfere with the
run. It is recommended, unless you’re a developer, to use the log file than ssh.

The instance may be set to run for some time after the run finishes, to allow debugging time with the ssh option. This
parameter (in minutes) can be set in the shutdown_min field inside the config field of the input execution json.

On the instance, one can check the following, for example.

For CWL,

• /data1/input/ : input files

• /data1/tmp* : temp/intermediate files (need sudo access)

• /data1/output/ : output files (need sudo access)

• top : to see what processes are running and how much cpu/memory is being used

• ps -fe : to see what processes are running, in more detail

For WDL,

• /data1/input/ : input files

• /data1/wdl/cromwell-execution/* : temp/intermediate files, output files and logs

• top : to see what processes are running and how much cpu/memory is being used

• ps -fe : to see what processes are running, in more detail

76 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

Console

EC2 instances

You can also check from the Console the instance that is running which has a name awsem-<jobid>. It will terminate
itself when the run finishes. You won’t have access to terminate this or any other instance, but if something is hanging
for too long, please contact the admin to resolve the issue.

Step functions

When the run finishes successfully, you’ll see in your bucket a file <jobid>.success. If there was an error, you will see
a file <jobid>.error instead. The step functions will look green on every step, if the run was successful. If one of the
steps is red, it means it failed at that step.

Success Fail

Cloud Watch

Cloudwatch dashboard option is now disabled and replaced by the resource metric report that is generated by the
plot_metrics command (below Resource Metrics Report section).

1.4. Tibanna 77

tibanna Documentation, Release 4.0.0

Resource Metrics Report

Tibanna can collect Cloud Watch metrics on used resources in real time for each run. The metrics are saved as tsv files
together with an html report automatically created for visualization. The metrics are collected by 1 minute interval or
5 minute interval depending on the availability on Cloud Watch. The metrics and html files created are uploaded to an
S3 bucket.

plot_metrics

This command allows to save Cloud Watch data collected in the required time interval and creates an html report for
the visualization.

By default the command will retrieve the data from cloud watch, and creates several files:

• a metrics.tsv file containing all the data points

• a metrics_report.tsv containing the average statistics and other information about the EC2 instance

• a metrics.html report for visualization

All the files are eventually uploaded to a folder named <jobid>.metrics inside the log S3 bucket specified for
tibanna output. To visualize the html report the URL structure is: https://<log-bucket>.s3.amazonaws.
com/<jobid>.metrics/metrics.html

Starting with 1.0.0, the metrics plot will include per-process CPU and memory profiles retrieved from the top
command reports at a 1-minute interval. Additional files top_cpu.tsv and top_mem.tsv will also be created under the
same folder <jobid>.metrics.

From version 2.1.0, the metrics that are send to cloud watch are defined here: https://raw.
githubusercontent.com/4dn-dcic/tibanna/master/awsf3/cloudwatch_agent_config.
json. Note that not every metric that is available in cloud watch is displayed in the report created by
plot_metrics.

Basic Command

tibanna plot_metrics --job-id=<jobid> [<options>]

Options

-s|--sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME. If the

→˓environmental
variable is not set, it uses name 'tibanna_pony'

→˓(4dn
default, works only for 4dn).

-f|--force-upload Upload the metrics reports to the S3 bucket even
if there is a lock file (upload is blocked by

→˓default
by the lock)

-u|--update-html-only Update only the html file for metrics
→˓visualization

(continues on next page)

78 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

-B|--do-not-open-browser Do not open the browser to visualize the metrics
→˓html

after it has been created/updated

-e|--endtime=<end_time> Endtime (default job end time if the job has
→˓finished

or the current time)
-i|--instance-id=<instance_id> Manually provide instance_id if somehow tibanna
→˓fails

to retrieve the info

When metrics are collected for a run that is complete, a lock file is automatically created inside the same folder. The
command will not update the metrics files if a lock file is present. To override this behavior the --force-upload
flag allows to upload the metrics files ignoring the lock. The --update-html-only allows to only update the
metrics.html file without modifying the other tsv files. By default the command will open the html report in the
browser for visualization when execution is complete, --do-not-open-browser can be added to prevent this
behavior.

Summary metrics collected as a table

Some summary metrics are collected and shown in the table of at the beginning of the metrics report. They are:

• EC2 Instance type

• Memory, Disk, and CPU utilization as a percentage of the maximum resources available for the EC2 instance

• Memory used in Mb

• Memory available in Mb

• Disk used in Gb

• Start time, end time, and total elapsed time

1.4. Tibanna 79

tibanna Documentation, Release 4.0.0

html report example

80 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

1.4. Tibanna 81

tibanna Documentation, Release 4.0.0

cost

This command allows to retrieve the cost for the run. The cost is not immediately ready and usually requires few days
to become available. The command eventually allows to update the information obtained with plot_metrics by adding
the cost.

tibanna cost --job-id=<jobid> [<options>]

Options

82 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

-s|--sfn=<stepfunctionname> An example step function name may be
'tibanna_unicorn_defaut_3978'. If not specified,

→˓default
value is taken from environmental variable
TIBANNA_DEFAULT_STEP_FUNCTION_NAME. If the

→˓environmental
variable is not set, it uses name 'tibanna_pony'

→˓(4dn
default, works only for 4dn).

-u|--update-tsv Update with the cost the tsv file that stores
→˓metrics

information on the S3 bucket

1.4.9 Common Workflow Language (CWL)

Tibanna supports CWL version 1.0 (https://www.commonwl.org/). Starting with Tibanna version 1.0.0, CWL draft-
3 is no longer supported.

1.4.10 Workflow Description Language (WDL)

Tibanna version < 1.0.0 supports WDL draft-2, through Cromwell binary version 35. Tibanna version >= 1.0.0
supports both WDL draft-2 and v1.0, through Cromwell binary version 35 and 53, respectively. This is because some
of our old WDL pipelines written in draft-2 version no longer works with the new Cromwell version and we wanted to
ensure the backward compatibility. But if you want to use WDL draft-2, specify "language": "wdl_draft2"
instead of "language": "wdl" which defaults to WDL v1.0.

Tibanna version >= 1.7.0 supports (Caper) in addition to Cromwell. If you would like to use Caper, add
"workflow_engine": "caper" to the Tibanna job description. Cromwell is the default. If you want to
pass additional parameters to Cromwell or Caper, you can specify run_args in the Tibanna job description, e.g.,
"run_args": "--docker" will add the docker flag to the Cromwell/Caper run command.

1.4.11 Snakemake

Tibanna supports Snakemake pipelines through the snakemake interface (snakemake --tibanna). Check out the
Snakemake documentation for more details.

1.4.12 Amazon Machine Image

Tibanna now uses the Amazon Machine Images (AMI) ami-06e2266f85063aabc (x86) and
ami-0f3e90ad8e76c7a32 (Arm), which are made public for us-east-1. One can find them among
Community AMIs. (Tibanna automatically finds and uses them, so no need to worry about it.)

For regions that are not us-east-1, copies of these AMIs are publicly available (different AMI IDs) and are auto-
detected by Tibanna.

If you want to use your own AMI, you can overwrite the default values in the config field of the Job Description
JSON:

{
"args": {
...

(continues on next page)

1.4. Tibanna 83

https://www.commonwl.org/
https://github.com/ENCODE-DCC/caper
https://snakemake.readthedocs.io/en/stable/executing/cloud.html#executing-a-snakemake-workflow-via-tibanna-on-amazon-web-services

tibanna Documentation, Release 4.0.0

(continued from previous page)

},
"config": {
...
"ami_per_region": {

"x86": {
"us-east-1": "my_x86_ami_ue1",
"us-east-2": "my_x86_ami_ue2",
...

},
"Arm": {

"us-east-1": "my_arm_ami_ue1",
"us-east-2": "my_arm_ami_ue2",
...

}
},

}
}

1.4.13 Running 4DN pipelines using Tibanna

• For 4DN pipelines, benchmark functions are pre-implemented in Tibanna through the Benchmark package. This
means that the user does not have to choose EC2 instance type or EBS size (they are auto-determined). However,
if the user wants to specify them, the following fields can be used. EBS_optimized makes IO slightly faster,
but it is not supported by all isntance types. If you’re not sure, choose false.

Example

"config": {
"instance_type": "instance_type",
"ebs_size": 10,
"EBS_optimized": false,

General Quality Control

md5

• Description : calculates two md5sum values (one the file itself, one for ungzipped) for an input file. If the input
file is not gzipped, it reports only the first one.

• CWL : https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/md5.cwl

• Docker : duplexa/md5:v2

• 4DN workflow metadata : https://data.4dnucleome.org/workflows/c77a117b-9a58-477e-aaa5-291a109a99f6/

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/75ce5f66-f98f-4222-9d1c-3daed262856b/
#graph

84 Chapter 1. What do I need to run pipelines using Tibanna?

https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/md5.cwl
https://data.4dnucleome.org/workflows/c77a117b-9a58-477e-aaa5-291a109a99f6/
https://data.4dnucleome.org/workflow-runs-awsem/75ce5f66-f98f-4222-9d1c-3daed262856b/#graph
https://data.4dnucleome.org/workflow-runs-awsem/75ce5f66-f98f-4222-9d1c-3daed262856b/#graph

tibanna Documentation, Release 4.0.0

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {
"app_name": "md5",
"app_version": "0.2.6",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/0.

→˓2.6/cwl_awsem_v1/",
"cwl_version": "v1",
"cwl_main_filename": "md5.cwl",
"input_files": {

"input_file": {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_INPUT_FILE_NAME_IN_INPUT_BUCKET>"

}
},
"output_S3_bucket": "<YOUR_OUTPUT_BUCKET>",
"output_target": {

"report": "<YOUR_OUTPUT_FILE_NAME_IN_OUTPUT_BUCKET>"
}

},
"config": {
"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

fastqc

• Description : run fastqc on a fastq file

• CWL : https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/fastqc-0-11-4-1.cwl

• Docker : duplexa/4dn-hic:v32

• 4DN workflow metadata : https://data.4dnucleome.org/workflows/2324ad76-ff37-4157-8bcc-3ce72b7dace9/

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/be8edc0a-f74a-4fae-858e-2915af283ee3/
#details

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args" {

"app_name": "fastqc-0-11-4-1",
"app_version": "0.2.0",
"cwl_version": "v1",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/

→˓0.2.6/cwl_awsem_v1/", (continues on next page)

1.4. Tibanna 85

https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/fastqc-0-11-4-1.cwl
https://data.4dnucleome.org/workflows/2324ad76-ff37-4157-8bcc-3ce72b7dace9/
https://data.4dnucleome.org/workflow-runs-awsem/be8edc0a-f74a-4fae-858e-2915af283ee3/#details
https://data.4dnucleome.org/workflow-runs-awsem/be8edc0a-f74a-4fae-858e-2915af283ee3/#details

tibanna Documentation, Release 4.0.0

(continued from previous page)

"cwl_main_filename": "fastqc-0-11-4-1.cwl",
"cwl_child_filenames": ["fastqc-0-11-4.cwl"],
"input_files": {

"input_fastq": {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_INPUT_FILE>"

}
},
"output_S3_bucket": "<YOUR_OUTPUT_BUCKET>",
"output_target": {

"report_zip": "<YOUR_OUTPUT_REPORT_NAME>.zip"
}

},
"config": {

"log_bucket" : "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

Hi-C data processing & QC

• Example full pipeline run

bwa-mem

• Description : aligns Hi-C fastq files to a reference genome using bwa mem -SP5M. The output is a single bam
file. The bam file is not resorted, and does not accompany a .bai index file. The bwa reference genome index
must be bundled in a .tgz file.

86 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

• CWL : https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/bwa-mem.cwl

• Docker : duplexa/4dn-hic:v42.2

• 4DN workflow metadata : https://data.4dnucleome.org/workflows/3feedadc-50f9-4bb4-919b-09a8b731d0cc/

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/14fd752d-ede1-4cc2-bb69-6fae5726e173/

• 4DN reference files: https://data.4dnucleome.org/search/?file_format.file_format=bwaIndex&file_type=
genome+index&type=FileReference

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {
"app_name": "bwa-mem",
"app_version": "0.2.6",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/0.

→˓2.6/cwl_awsem_v1/",
"cwl_main_filename": "bwa-mem.cwl",
"cwl_version": "v1",
"input_files": {

"fastq1": {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_FASTQ_FILE_R1>"

},
"fastq2": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_FASTQ_FILE_R2>"

},
"bwa_index": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_TGZ_BWA_INDEX_FILE>"

}
},
"input_parameters": {

"nThreads": 2

(continues on next page)

1.4. Tibanna 87

https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/bwa-mem.cwl
https://data.4dnucleome.org/workflows/3feedadc-50f9-4bb4-919b-09a8b731d0cc/
https://data.4dnucleome.org/workflow-runs-awsem/14fd752d-ede1-4cc2-bb69-6fae5726e173/
https://data.4dnucleome.org/search/?file_format.file_format=bwaIndex&file_type=genome+index&type=FileReference
https://data.4dnucleome.org/search/?file_format.file_format=bwaIndex&file_type=genome+index&type=FileReference

tibanna Documentation, Release 4.0.0

(continued from previous page)

},
"output_S3_bucket": "<YOUR_OUTPUT_BUCKET>",
"output_target": {

"out_bam": "<YOUR_OUTPUT_BAM_FILE>.bam"
}

},
"config": {
"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

hi-c-processing-bam

• Description : takes in a set of bam files and performs merging, sorting, filtering and produces a .pairs.gz
file (and a .pairs.gz.px2 index file). The output includes a merged and filter-annotated lossless bam file.

• CWL : https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/hi-c-processing-bam..cwl

• Docker : duplexa/4dn-hic:v42.2

• 4DN workflow metadata : https://data.4dnucleome.org/workflows/023bfb3e-9a8b-42b9-a9d4-216079526f68/

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/b13b2ab8-f176-422f-a1eb-ed213ac991af/

• 4DN reference files:

– chromsizes files : e.g.) https://data.4dnucleome.org/files-reference/4DNFI823LSII (GRCh38, main chro-
mosomes only)

– restriction site files : https://data.4dnucleome.org/search/?file_type=restriction+sites&type=FileReference

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {
"app_name": "hi-c-processing-bam",
"app_version": "0.2.6",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/0.

→˓2.6/cwl_awsem_v1/",
"cwl_main_filename": "hi-c-processing-bam.cwl",
"cwl_child_filenames": [

"pairsam-parse-sort.cwl",
"pairsam-merge.cwl",
"pairsam-markasdup.cwl",
"pairsam-filter.cwl",
"addfragtopairs.cwl"

],

(continues on next page)

88 Chapter 1. What do I need to run pipelines using Tibanna?

https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/hi-c-processing-bam..cwl
https://data.4dnucleome.org/workflows/023bfb3e-9a8b-42b9-a9d4-216079526f68/
https://data.4dnucleome.org/workflow-runs-awsem/b13b2ab8-f176-422f-a1eb-ed213ac991af/
https://data.4dnucleome.org/files-reference/4DNFI823LSII
https://data.4dnucleome.org/search/?file_type=restriction+sites&type=FileReference

tibanna Documentation, Release 4.0.0

(continued from previous page)

"input_files": {
"chromsize": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_INPUT_CHROMSIZES_FILE>"

},
"input_bams": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": [
"<YOUR_BAM_FILE1>",
"<YOUT_BAM_FILE2>",
"<YOUT_BAM_FILE3>"

]
},
"restriction_file": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_RESTRICTION_SITE_FILE>"

}
},
"input_parameters": {

"nthreads_parse_sort": 8,
"nthreads_merge": 8

},
"output_S3_bucket": "<YOUR_OUTPUT_BUCKET>",
"output_target": {

"out_pairs": "<YOUR_OUTPUT_PAIRS_FILE>.pairs.gz",
"merged_annotated_bam": "<YOUR_OUTPUT_MERGED_BAM_FILE>.bam"

},
"secondary_output_target": {

"out_pairs": "<YOUR_OUTPUT_PAIRS_FILE>.pairs.gz.px2"
}

},
"config": {
"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

hi-c-processing-pairs

• Description : takes in a set of pairs files, merges them and creates contact matrix files in both .mcool and
.hic formats. The output includes a merged pairs file.

• CWL : https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/hi-c-processing-pairs.cwl

• Docker : duplexa/4dn-hic:v42.2

• 4DN workflow metadata : https://data.4dnucleome.org/workflows/c9e0e6f7-b0ed-4a42-9466-cadc2dd84df0/

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/c0e0da16-a2f9-4e87-a3b2-8f6b4c675a52/

1.4. Tibanna 89

https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/hi-c-processing-pairs.cwl
https://data.4dnucleome.org/workflows/c9e0e6f7-b0ed-4a42-9466-cadc2dd84df0/
https://data.4dnucleome.org/workflow-runs-awsem/c0e0da16-a2f9-4e87-a3b2-8f6b4c675a52/

tibanna Documentation, Release 4.0.0

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {
"app_name": "hi-c-processing-pairs",
"app_version": "0.2.6",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/0.

→˓2.6/cwl_awsem_v1/",
"cwl_main_filename": "hi-c-processing-pairs.cwl",
"cwl_child_filenames": [

"merge-pairs.cwl",
"addfragtopairs.cwl",
"pairs2hic.cwl",
"cooler.cwl",
"cool2mcool.cwl",
"extract-mcool-normvector-for-juicebox.cwl",
"add-hic-normvector-to-mcool.cwl"

],
"cwl_version": "v1",
"input_files": {

"chromsizes": {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_INPUT_CHROMSIZES_FILE>"

},
"input_pairs": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": [

"<YOUR_INPUT_PAIRS_FILE1>",
"<YOUR_INPUT_PAIRS_FILE2>",
"<YOUR_INPUT_PAIRS_FILE3>"

]
},
"restriction_file": {

(continues on next page)

90 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_RESTRICTION_SITE_FILE>"

}
},
"input_parameters": {

"ncores": 1,
"maxmem": "8g"

},
"output_S3_bucket": "<YOUR_OUTPUT_BUCKET>",
"output_target": {

"mcool": "<YOUR_OUTPUT_MULTIRES_COOL_FILE>.mcool",
"merged_pairs": "<YOUR_OUTPUT_MERGED_PAIRS_FILE>.pairs.gz",
"hic": "<YOUR_OUTPUT_HIC_FILE>.hic"

},
"secondary_output_target": {

"output_pairs": "<YOUR_OUTPUT_MERGED_PAIRS_FILE>.pairs.gz.px2"
}

},
"config": {
"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

pairsqc

• Description : calculated QC stats for a pairs file and generates a report zip file containing an .html file and
other table files.

• CWL : https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/pairsqc-single.cwl

• Docker : duplexa/4dn-hic:v42.2

• 4DN workflow metadata : https://data.4dnucleome.org/workflows/b8c533e0-f8c0-4510-b4a1-ac35158e27c3/

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/902f34fa-dff9-4f26-9af5-64b39b13a069/

1.4. Tibanna 91

https://github.com/4dn-dcic/pipelines-cwl/blob/0.2.6/cwl_awsem_v1/pairsqc-single.cwl
https://data.4dnucleome.org/workflows/b8c533e0-f8c0-4510-b4a1-ac35158e27c3/
https://data.4dnucleome.org/workflow-runs-awsem/902f34fa-dff9-4f26-9af5-64b39b13a069/

tibanna Documentation, Release 4.0.0

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {

"app_name": "pairsqc-single",
"app_version": "0.2.6",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/pipelines-cwl/

→˓0.2.6/cwl_awsem_v1/",
"cwl_main_filename": "pairsqc-single.cwl",
"cwl_version": "v1",
"input_files": {

"input_pairs" : {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_PAIRS_FILE>"

},
"chromsizes" : {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_INPUT_CHROMSIZES_FILE>"

}
},
"secondary_files": {

"input_pairs": {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_PAIRS_FILE>.px2"

}
},
"input_parameters" : {

"enzyme": "6",
"sample_name": "4DNFI1ZLO9D7",
"max_distance": 8.2

(continues on next page)

92 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

},
"output_S3_bucket": "<YOUR_OUTPUT_BUCKET>",
"output_target": {

"report": "<YOUR_OUTPUT_REPORT_FILE>.zip"
}

},
"config": {

"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

Repli-seq data processing & QC

repliseq-parta

• Description : takes in repli-seq single-end fastq file and performs alignment, sorting, filtering and produces a
bedgraph file containing read counts per bin.

• CWL : https://raw.githubusercontent.com/4dn-dcic/docker-4dn-repliseq/v14/cwl/repliseq-parta.cwl

• Docker : duplexa/4dn-repliseq:v14

• 4DN workflow metadata : https://data.4dnucleome.org/workflows/4459a4d8-1bd8-4b6a-b2cc-2506f4270a34/

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/66e76f78-0495-4a2a-abfc-2d494d724ded/

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {
"app_name": "repliseq-parta",
"app_version": "v14",
"cwl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/docker-4dn-

→˓repliseq/v14/cwl/"
"cwl_main_filename": "repliseq-parta.cwl",
"cwl_child_filenames": ["clip.cwl","align.cwl","filtersort.cwl","dedup.cwl",

→˓"count.cwl"],
"cwl_version": "v1",
"input_files": {

"fastq": {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_INPUT_FASTQ>"

},
"bwaIndex": {

(continues on next page)

1.4. Tibanna 93

https://raw.githubusercontent.com/4dn-dcic/docker-4dn-repliseq/v14/cwl/repliseq-parta.cwl
https://data.4dnucleome.org/workflows/4459a4d8-1bd8-4b6a-b2cc-2506f4270a34/
https://data.4dnucleome.org/workflow-runs-awsem/66e76f78-0495-4a2a-abfc-2d494d724ded/

tibanna Documentation, Release 4.0.0

(continued from previous page)

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_INPUT_TGZ_BWA_INDEX>"

},
"chromsizes": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_CHROMSIZES_FILE>"

}
},
"input_parameters": { "nthreads": 8 },
"output_S3_bucket": "<YOUR_OUTPUT_BUCKET>",
"output_target": {

"filtered_sorted_deduped_bam": "<YOUR_OUTPUT_FILTERED_BAM>.bam",
"dedup_qc_report": "<YOUR_QC_REPORT>.zip",
"count_bg": "<YOUR_OUTPUT_COUNT_BEDGRAPH_FILE>.bg"

}
},
"config": {
"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

ChIP-seq data processing & QC

• Example full pipeline run

94 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

encode-chipseq-aln-chip

• Description : takes in fastq files from a single biological replicate (may consist of multiple technical replicates)
and generates a TagAlign file for that biological replicate. The output includes another TagAlign file exclusively
for xcor analysis in the next step (encode-chipseq-postaln).

• WDL : https://github.com/4dn-dcic/chip-seq-pipeline2/blob/4dn-v1.1.1/chip.wdl

• Docker : 4dndcic/encode-chipseq:v1.1.1

• 4DN workflow metadata : https://data.4dnucleome.org/4dn-dcic-lab:wf-encode-chipseq-aln-chip

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/3e0fc011-5e84-476e-93a7-176d4ce718c6/

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {
"app_name": "encode-chipseq-aln-chip",
"app_version": "v1.1.1",
"wdl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/chip-seq-

→˓pipeline2/4dn-v1.1.1/",
"wdl_main_filename": "chip.wdl",
"language": "wdl",
"input_files": {

"chip.fastqs": {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": [[

["<YOUR_INPUT_FASTQ_R1_TECHREP1>.fastq.gz", "<YOUR_INPUT_FASTQ_R2_
→˓TECHREP1>.fastq.gz"],

["<YOUR_INPUT_FASTQ_R1_TECHREP2>.fastq.gz", "<YOUR_INPUT_FASTQ_R2_
→˓TECHREP2>.fastq.gz"]

]]
},
"chip.bwa_idx_tar": {

"bucket_name": "<YOUR_INPUT_BUCKET>",

(continues on next page)

1.4. Tibanna 95

https://github.com/4dn-dcic/chip-seq-pipeline2/blob/4dn-v1.1.1/chip.wdl
https://data.4dnucleome.org/4dn-dcic-lab:wf-encode-chipseq-aln-chip
https://data.4dnucleome.org/workflow-runs-awsem/3e0fc011-5e84-476e-93a7-176d4ce718c6/

tibanna Documentation, Release 4.0.0

(continued from previous page)

"rename": "GRCh38_no_alt_analysis_set_GCA_000001405.15.fasta.tar",
"object_key": "<YOUR_INPUT_TAR_BWA_INDEX>"

},
"chip.blacklist": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_BLACKLIST_FILE>.bed.gz"

},
"chip.chrsz": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_CHROMSIZES_FILE>.chrom.sizes"

}
},
"input_parameters": {

"chip.pipeline_type" : "histone",
"chip.paired_end" : true,
"chip.choose_ctl.always_use_pooled_ctl" : true,
"chip.qc_report.name" : "<YOUR_QC_REPORT_NAME>",
"chip.qc_report.desc" : "<YOUR_QC_REPORT_DESCRIPTION>",
"chip.gensz" : "hs",
"chip.bam2ta.regex_grep_v_ta" : "chr[MUE]|random|alt",
"chip.fraglen": [],
"chip.bwa.cpu": 16,
"chip.merge_fastq.cpu": 16,
"chip.filter.cpu": 16,
"chip.bam2ta.cpu": 16,
"chip.xcor.cpu": 16,
"chip.align_only": true

},
"output_S3_bucket": "<YOUR_INPUT_BUCKET>",
"output_target": {

"chip.first_ta": "<YOUR_OUTPUT_TAG_ALIGN_FILE>.bed.gz",
"chip.first_ta_xcor": "<YOUR_OUTPUT_TAG_ALIGN_FILE_FOR_XCOR>.bed.gz"

}
},
"config": {
"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

encode-chipseq-aln-ctl

• Description : takes in control fastq files from a single biological replicate (may consist of multiple technical
replicates) and generates a TagAlign file for that biological replicate.

• WDL : https://github.com/4dn-dcic/chip-seq-pipeline2/blob/4dn-v1.1.1/chip.wdl

• Docker : 4dndcic/encode-chipseq:v1.1.1

• 4DN workflow metadata : https://data.4dnucleome.org/4dn-dcic-lab:wf-encode-chipseq-aln-ctl

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/f02336f6-aa6e-491d-8562-db61bcc86303/

96 Chapter 1. What do I need to run pipelines using Tibanna?

https://github.com/4dn-dcic/chip-seq-pipeline2/blob/4dn-v1.1.1/chip.wdl
https://data.4dnucleome.org/4dn-dcic-lab:wf-encode-chipseq-aln-ctl
https://data.4dnucleome.org/workflow-runs-awsem/f02336f6-aa6e-491d-8562-db61bcc86303/

tibanna Documentation, Release 4.0.0

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {
"app_name": "encode-chipseq-aln-ctl",
"app_version": "v1.1.1",
"wdl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/chip-seq-

→˓pipeline2/4dn-v1.1.1/",
"wdl_main_filename": "chip.wdl",
"language": "wdl",
"input_files": {

"chip.ctl_fastqs": {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": [[

["<YOUR_INPUT_FASTQ_R1_TECHREP1>.fastq.gz", "<YOUR_INPUT_FASTQ_R2_
→˓TECHREP1>.fastq.gz"],

["<YOUR_INPUT_FASTQ_R1_TECHREP2>.fastq.gz", "<YOUR_INPUT_FASTQ_R2_
→˓TECHREP2>.fastq.gz"]

]]
},
"chip.bwa_idx_tar": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"rename": "GRCh38_no_alt_analysis_set_GCA_000001405.15.fasta.tar",
"object_key": "<YOUR_INPUT_TAR_BWA_INDEX>"

},
"chip.blacklist": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_BLACKLIST_FILE>.bed.gz"

},
"chip.chrsz": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_CHROMSIZES_FILE>.chrom.sizes"

}
},
"input_parameters": {

"chip.pipeline_type" : "histone",
(continues on next page)

1.4. Tibanna 97

tibanna Documentation, Release 4.0.0

(continued from previous page)

"chip.paired_end" : true,
"chip.choose_ctl.always_use_pooled_ctl" : true,
"chip.qc_report.name" : "<YOUR_QC_REPORT_NAME>",
"chip.qc_report.desc" : "<YOUR_QC_REPORT_DESCRIPTION>",
"chip.gensz" : "hs",
"chip.bam2ta_ctl.regex_grep_v_ta" : "chr[MUE]|random|alt",
"chip.fraglen": [],
"chip.bwa_ctl.cpu": 16,
"chip.merge_fastq_ctl.cpu": 16,
"chip.filter_ctl.cpu": 16,
"chip.bam2ta_ctl.cpu": 16,
"chip.align_only": true

},
"output_S3_bucket": "<YOUR_INPUT_BUCKET>",
"output_target": {

"chip.first_ta": "<YOUR_OUTPUT_TAG_ALIGN_FILE>.bed.gz",
"chip.first_ta_xcor": "<YOUR_OUTPUT_TAG_ALIGN_FILE_FOR_XCOR>.bed.gz"

}
},
"config": {
"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

encode-chipseq-postaln

• Description : takes in TagAlign files generates from encode-chipseq-aln-chip and
encode-chipsq-aln-ctl and calls peaks. The output files are signal fold change (bigwig) and
two peak call sets (bigbed). The pipeline cannot handle more than two biological replicates due to the limitation
of the ENCODE pipeline.

• WDL : https://github.com/4dn-dcic/chip-seq-pipeline2/blob/4dn-v1.1.1/chip.wdl

• Docker : 4dndcic/encode-chipseq:v1.1.1

• 4DN workflow metadata : https://data.4dnucleome.org/4dn-dcic-lab:wf-encode-chipseq-postaln

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/8666c89e-eccb-4dc1-9b12-ceb04802ca09/

98 Chapter 1. What do I need to run pipelines using Tibanna?

https://github.com/4dn-dcic/chip-seq-pipeline2/blob/4dn-v1.1.1/chip.wdl
https://data.4dnucleome.org/4dn-dcic-lab:wf-encode-chipseq-postaln
https://data.4dnucleome.org/workflow-runs-awsem/8666c89e-eccb-4dc1-9b12-ceb04802ca09/

tibanna Documentation, Release 4.0.0

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {

"app_name": "encode-chipseq-postaln",
"app_version": "v1.1.1",
"wdl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/chip-seq-

→˓pipeline2/4dn-v1.1.1/",
"wdl_main_filename": "chip.wdl",
"language": "wdl",
"input_files" : {

"chip.tas" : {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": ["<YOUR_INPUT_TAG_ALIGN_BIOREP1>.bed.gz",

"<YOUR_INPUT_TAG_ALIGN_BIOREP2>.bed.gz"],
"rename": ["<YOUR_INPUT_TAG_ALIGN_BIOREP1>.tagAlign.gz",

"<YOUR_INPUT_TAG_ALIGN_BIOREP2>.tagAlign.gz"]
},
"chip.ctl_tas" : {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": ["<YOUR_INPUT_CTL_TAG_ALIGN_BIOREP1>.bed.gz",

"<YOUR_INPUT_CTL_TAG_ALIGN_BIOREP2>.bed.gz"],
"rename": ["<YOUR_INPUT_CTL_TAG_ALIGN_BIOREP1>.tagAlign.gz",

"<YOUR_INPUT_CTL_TAG_ALIGN_BIOREP2>.tagAlign.gz"]
},
"chip.bam2ta_no_filt_R1.ta" : {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": ["<YOUR_INPUT_XCOR_TAG_ALIGN_BIOREP1>.bed.gz",

"<YOUR_INPUT_XCOR_TAG_ALIGN_BIOREP1>.bed.gz"],
"rename": ["<YOUR_INPUT_XCOR_TAG_ALIGN_BIOREP1>.tagAlign.gz",

(continues on next page)

1.4. Tibanna 99

tibanna Documentation, Release 4.0.0

(continued from previous page)

"<YOUR_INPUT_XCOR_TAG_ALIGN_BIOREP2>.tagAlign.gz"]
},
"chip.blacklist" : {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_BLACKLIST_FILE>.bed.gz"

},
"chip.chrsz" : {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_CHROMSIZES_FILE>"

}
},
"input_parameters": {

"chip.pipeline_type" : "histone",
"chip.paired_end" : true,
"chip.choose_ctl.always_use_pooled_ctl" : true,
"chip.qc_report.name" : "<YOUR_QC_REPORT_NAME>",
"chip.qc_report.desc" : "<YOUR_QC_REPORT_DESCRIPTION>",
"chip.gensz" : "hs",
"chip.xcor.cpu": 4,
"chip.spp_cpu": 4

},
"output_S3_bucket": "<YOUR_OUTPUT_BUCKET>",
"output_target": {

"chip.sig_fc": "<YOUR_OUTPUT_SIGNAL_FC_FILE>.bw",
"chip.optimal_peak": "<YOUR_OUTPUT_OPTIMAL_PEAK_FILE>.bb",
"chip.conservative_peak": "<YOUR_OUTPUT_CONSERVATIVE_PEAK_FILE>.bb",
"chip.report": "<YOUR_OUTPUT_QC_REPORT>.html",
"chip.qc_json": "<YOUR_OUTPUT_QC_JSON>.json"

}
},
"config": {
"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

ATAC-seq data processing & QC

• Example full pipeline run

100 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

encode-atacseq-aln

• Description : takes in fastq files from a single biological replicate (may consist of multiple technical replicates)
and generates a TagAlign file for that biological replicate.

• WDL : https://github.com/4dn-dcic/atac-seq-pipeline/blob/4dn-v1.1.1/atac.wdl

• Docker : 4dndcic/encode-atacseq:v1.1.1

• 4DN workflow metadata : https://data.4dnucleome.org/4dn-dcic-lab:wf-encode-atacseq-aln

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/c57697c4-c589-4025-ad81-e212a5220f74/

1.4. Tibanna 101

https://github.com/4dn-dcic/atac-seq-pipeline/blob/4dn-v1.1.1/atac.wdl
https://data.4dnucleome.org/4dn-dcic-lab:wf-encode-atacseq-aln
https://data.4dnucleome.org/workflow-runs-awsem/c57697c4-c589-4025-ad81-e212a5220f74/

tibanna Documentation, Release 4.0.0

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {
"app_name": "encode-atacseq-aln",
"app_version": "1.1.1",
"wdl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/atac-seq-

→˓pipeline/4dn-v1.1.1/",
"wdl_main_filename": "atac.wdl",
"language": "wdl",
"input_files": {

"atac.bowtie2_idx_tar": {
"rename": "mm10_no_alt_analysis_set_ENCODE.fasta.tar",
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_TAR_BOWTIE2_INDEX>"

},
"atac.fastqs": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": [[

["<YOUR_INPUT_FASTQ_R1_TECHREP1>.fastq.gz", "<YOUR_INPUT_FASTQ_R2_
→˓TECHREP1>.fastq.gz"],

["<YOUR_INPUT_FASTQ_R1_TECHREP2>.fastq.gz", "<YOUR_INPUT_FASTQ_R2_
→˓TECHREP2>.fastq.gz"]

]]
},
"atac.blacklist": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_BLACKLIST_FILE>.bed.gz"

},
"atac.chrsz": {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_CHROMSIZES_FILE>"

}
},
"input_parameters": {

(continues on next page)

102 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

"atac.trim_adapter.cpu": 4,
"atac.paired_end": true,
"atac.bam2ta.regex_grep_v_ta": "chr[MUE]|random|alt",
"atac.enable_xcor": false,
"atac.disable_ataqc": true,
"atac.filter.cpu": 4,
"atac.trim_adapter.auto_detect_adapter": true,
"atac.bam2ta.cpu": 4,
"atac.bowtie2.cpu": 4,
"atac.gensz": "mm",
"atac.pipeline_type": "atac",
"atac.align_only": true

},
"output_S3_bucket": "<YOUR_OUTPUT_BUCKET>",
"output_target": {

"atac.first_ta": "<YOUR_OUTPUT_TAGALIGN>.bed.gz",
"atac.report": "<YOUR_OUTPUT_QC_REPORT>.html",
"atac.qc_json": "<YOUR_OUTPUT_QC_JSON.json",

}
},
"config": {
"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

encode-atacseq-postaln

• Description : takes in TagAlign files generates from encode-atacseq-aln and calls peaks. The output
files are signal fold change (bigwig) and two peak call sets (bigbed). The pipeline cannot handle more than two
biological replicates due to the limitation of the ENCODE pipeline.

• WDL : https://github.com/4dn-dcic/atac-seq-pipeline/blob/4dn-v1.1.1/atac.wdl

• Docker : 4dndcic/encode-atacseq:v1.1.1

• 4DN workflow metadata : https://data.4dnucleome.org/4dn-dcic-lab:wf-encode-atacseq-postaln

• 4DN example run: https://data.4dnucleome.org/workflow-runs-awsem/afe50cb7-7417-4870-a5be-060600738fb0/

1.4. Tibanna 103

https://github.com/4dn-dcic/atac-seq-pipeline/blob/4dn-v1.1.1/atac.wdl
https://data.4dnucleome.org/4dn-dcic-lab:wf-encode-atacseq-postaln
https://data.4dnucleome.org/workflow-runs-awsem/afe50cb7-7417-4870-a5be-060600738fb0/

tibanna Documentation, Release 4.0.0

• Example input execution json template :

Use the following as a template and replace <YOUR....> with your input/output/log bucket/file(object) information.

{
"args": {

"app_name": "encode-atacseq-postaln",
"app_version": "v1.1.1",
"wdl_directory_url": "https://raw.githubusercontent.com/4dn-dcic/atac-seq-

→˓pipeline/4dn-v1.1.1/",
"wdl_main_filename": "atac.wdl",
"language": "wdl",
"input_files" : {

"atac.tas" : {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": ["<YOUR_INPUT_TAG_ALIGN_BIOREP1>.bed.gz",

"<YOUR_INPUT_TAG_ALIGN_BIOREP2>.bed.gz"],
"rename": ["<YOUR_INPUT_TAG_ALIGN_BIOREP1>.tagAlign.gz",

"<YOUR_INPUT_TAG_ALIGN_BIOREP2>.tagAlign.gz"]
},
"atac.blacklist" : {
"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_BLACKLIST_FILE>.bed.gz"

},
"atac.chrsz" : {

"bucket_name": "<YOUR_INPUT_BUCKET>",
"object_key": "<YOUR_CHROMSIZES_FILE>"

}
},
"input_parameters": {

"atac.pipeline_type" : "atac",
"atac.paired_end" : true,
"atac.gensz" : "hs",

(continues on next page)

104 Chapter 1. What do I need to run pipelines using Tibanna?

tibanna Documentation, Release 4.0.0

(continued from previous page)

"atac.disable_ataqc": true,
"atac.enable_xcor": false

},
"output_S3_bucket": "<YOUR_OUTPUT_BUCKET>",
"output_target": {

"atac.sig_fc": "<YOUR_OUTPUT_SIGNAL_FC_FILE>.bw",
"atac.optimal_peak": "<YOUR_OUTPUT_OPTIMAL_PEAK_FILE>.bb",
"atac.conservative_peak": "<YOUR_OUTPUT_CONSERVATIVE_PEAK_FILE>.bb",
"atac.report": "<YOUR_OUTPUT_QC_REPORT>.html",
"atac.qc_json": "<YOUR_OUTPUT_QC_JSON>.json"

}
},
"config": {
"log_bucket": "<YOUR_LOG_BUCKET>",
"key_name": "<YOUR_KEY_NAME>"

}
}

1.4.14 How it works

Tibanna launches and monitors pipeline runs using two-layer scheduling. The upstream regulator is based on a finite
state machine called AWS Step Function and the downstream workflow engine is based on cwltool which runs
Docker/CWL-based pipelines on an EC2 instance (or cromwell for Docker/WDL-based pipelines). Tibanna’s AWS
Step Function launches several AWS Serverless Lambda functions that submits and monitors a pipeline execution on a
pre-custom-configured autonomous virtual machine (EC2 instance) (AWSEM; Autonomous Workflow Step Executor
Machine). The cwltool/‘‘cromwell‘ is auto-executed on an instance.

Tibanna allows multi-layer, real-time monitoring. The logs of what’s happening on an instance including the
cwltool log is regularly sent to a designated S3 bucket (Tibanna log bucket). Logs generated by the AWS Lambda
functions are sent to AWS CloudWatch, a service provided by AWS; AWS Step function sends logs either as an output
json or as an exception. Users can ssh into the EC2 instance where a workflow is currently being executed, for more
detailed investigation. A metrics plot is generated and stored for every job for monitoring how CPU/Memory/disk
usage changes over time during the run and for each process. The user can also check the top command outputs
generated from the instance at 1 minute interval, without ssh-ing into the machine, since these reports are sent to S3
regularly. Tibanna provides API to access these reports easily.

Tibanna uses AWS IAM roles to ensure secure access but also allows use of profile information for accessing public
data that requires AWS access keys and secret keys by setting environmental variables for AWS Lambda functions.
There is no need to store any security information inside docker image or anywhere in the code.

We have also implemented an accompanying resource optimizer for 4DN pipelines (https://github.com/SooLee/
Benchmark), which calculates total CPU, memory and space required for a specific workflow run to determine EC2
instance type and EBS (Elastic Block Store) volume size. The calculation is based on input size, workflow parameters
and the benchmarking results characteristic of individual workflows. The resource optimizer is essential for auto-
mated parameterization of data-dependent workflow runs, while maximizing the benefit of the elasticity of the cloud
platform. Tibanna currently uses this optimizer to auto-determine instance types and EBS sizes for 4DN workflow
runs.

1.4. Tibanna 105

https://github.com/SooLee/Benchmark
https://github.com/SooLee/Benchmark

	What do I need to run pipelines using Tibanna?
	Pipeline
	Data
	AWS cloud account
	Tibanna

